

**EMC TEST REPORT****EMC TEST REPORT  
ETSI EN 301 489-1 V2.2.3 (2019-11)  
ETSI EN 301 489-17 V3.3.1 (2024-09)**

Prepared for :

**Mid Ocean Brands B.V.**

**Unit 711-716, 7/F., Tower A, 83 King Lam Street, Cheung Sha Wan, Kowloon,  
Hong Kong.**

**Product: Anti-loss keyfinder**

**Trade Name: N/A**

**Model Name: MO9218**

**Date of Test: September 16, 2025- September 22, 2025**

**Date of Report: September 22, 2025**

**Report Number: SIT250915160301ER-1**

Prepared By :

**Shenzhen SiT Testing Technology Co., Ltd.**

**Room 401, Building A2, The 2nd Industrial Zone of Zhu'ao, Gushu, Xixiang,  
Bao'an District, Shenzhen, Guangdong, China  
TEL: +86-755-29173399 FAX: +86-755-29179933**

**E-mail: [info@sit-cert.com](mailto:info@sit-cert.com) <http://www.sit-cert.com>**

## TEST RESULT CERTIFICATION

**Applicant's name**..... Mid Ocean Brands B.V.

Address: Unit 711-716, 7/F., Tower A, 83 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong.

**Manufacture's Name**..... 114628

Address : /

### Product description

Product name..... Anti-loss keyfinder

Model and/or type reference . MO9218

Rating(s)..... Input: 3V—0.2A(CR2032)

**Standards**..... ETSI EN 301 489-1 V2.2.3 (2019-11)  
ETSI EN 301 489-17 V3.3.1 (2024-09)

This device described above has been tested by SIT LAB, and the test results show that the equipment under test (EUT) is in compliance with the 2014/53/EU RED Directive Art.3.1b requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of SIT LAB, this document may be altered or revised by SIT LAB, personal only, and shall be noted in the revision of the document.

**Date of Test**..... :

Date (s) of performance of tests.....: September 16, 2025- September 22, 2025

Date of Issue.....: September 22, 2025

Prepared by:



Project Engineer

Reviewed by:



Project Supervisor

Approved by:



Technical Director

|                                                           | Table of Contents | Page |
|-----------------------------------------------------------|-------------------|------|
| <b>1 . TEST SUMMARY</b>                                   |                   | 5    |
| <b>1.1 MEASUREMENT UNCERTAINTY</b>                        |                   | 6    |
| <b>2 . GENERAL INFORMATION</b>                            |                   | 7    |
| <b>2.1 DESCRIPTION OF TEST MODES</b>                      |                   | 8    |
| <b>2.2 DESCRIPTION OF TEST SETUP</b>                      |                   | 9    |
| <b>2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL</b> |                   | 10   |
| <b>2.4 MEASUREMENT INSTRUMENTS LIST</b>                   |                   | 11   |
| <b>3 . EMC EMISSION TEST</b>                              |                   | 13   |
| <b>3.1 CONDUCTED EMISSION MEASUREMENT</b>                 |                   | 13   |
| <b>3.1.1 POWER LINE CONDUCTED EMISSION</b>                |                   | 13   |
| <b>3.1.2 TEST PROCEDURE</b>                               |                   | 14   |
| <b>3.1.3 TEST SETUP</b>                                   |                   | 14   |
| <b>3.1.4 EUT OPERATING CONDITIONS</b>                     |                   | 14   |
| <b>3.2 RADIATED EMISSION MEASUREMENT</b>                  |                   | 15   |
| <b>3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT</b>      |                   | 15   |
| <b>3.2.2 LIMITS OF RADIATED EMISSION MEASUREMENT</b>      |                   | 15   |
| <b>3.2.3 TEST PROCEDURE</b>                               |                   | 15   |
| <b>3.2.4 TEST SETUP</b>                                   |                   | 16   |
| <b>3.2.5 EUT OPERATING CONDITIONS</b>                     |                   | 16   |
| <b>3.2.6 TEST RESULTS (30-1000MHz)</b>                    |                   | 17   |
| <b>3.2.7 TEST RESULTS(1000-6000)</b>                      |                   | 19   |
| <b>3.3 HARMONICS CURRENT</b>                              |                   | 20   |
| <b>3.3.1 LIMITS OF HARMONICS CURRENT</b>                  |                   | 20   |
| <b>3.3.1.1 TEST PROCEDURE</b>                             |                   | 21   |
| <b>3.3.1.2 EUT OPERATING CONDITIONS</b>                   |                   | 21   |
| <b>3.3.1.3 TEST SETUP</b>                                 |                   | 21   |
| <b>3.3.2 TEST RESULTS</b>                                 |                   | 22   |
| <b>3.4 VOLTAGE FLUCTUATION AND FLICKERS</b>               |                   | 23   |
| <b>3.4.1 LIMITS OF VOLTAGE FLUCTUATION AND FLICKERS</b>   |                   | 23   |
| <b>3.4.1.1 TEST PROCEDURE</b>                             |                   | 23   |
| <b>3.4.1.2 EUT OPERATING CONDITIONS</b>                   |                   | 23   |
| <b>3.4.1.3 TEST SETUP</b>                                 |                   | 23   |
| <b>3.4.2 TEST RESULTS</b>                                 |                   | 24   |
| <b>4 . EMC IMMUNITY TEST</b>                              |                   | 25   |
| <b>4.1 GENERAL PERFORMANCE CRITERIA</b>                   |                   | 25   |
| <b>4.1.1 PERFORMANCE CRITERIA</b>                         |                   | 25   |
| <b>4.2 GENERAL PERFORMANCE CRITERIA TEST SETUP</b>        |                   | 26   |
| <b>4.3 ESD TESTING</b>                                    |                   | 27   |

**Table of Contents**

|                                                      | <b>Page</b> |
|------------------------------------------------------|-------------|
| <b>4.3.1 TEST SPECIFICATION</b>                      | 27          |
| <b>4.3.2 TEST PROCEDURE</b>                          | 27          |
| <b>4.3.3 TEST SETUP</b>                              | 28          |
| <b>4.3.4 TEST RESULTS</b>                            | 29          |
| <b>4.4 RS TESTING</b>                                | 30          |
| <b>4.4.1 TEST SPECIFICATION</b>                      | 30          |
| <b>4.4.2 TEST PROCEDURE</b>                          | 30          |
| <b>4.4.3 TEST SETUP</b>                              | 31          |
| <b>4.4.4 TEST RESULTS</b>                            | 32          |
| <b>4.5 EFT/BURST TESTING</b>                         | 33          |
| <b>4.5.1 TEST SPECIFICATION</b>                      | 33          |
| <b>4.5.2 TEST PROCEDURE</b>                          | 33          |
| <b>4.5.3 TEST SETUP</b>                              | 34          |
| <b>4.5.4 TEST RESULTS</b>                            | 35          |
| <b>4.6 SURGE TESTING</b>                             | 36          |
| <b>4.6.1 TEST SPECIFICATION</b>                      | 36          |
| <b>4.6.2 TEST PROCEDURE</b>                          | 36          |
| <b>4.6.3 TEST SETUP</b>                              | 37          |
| <b>4.6.4 TEST RESULTS</b>                            | 38          |
| <b>4.7 INJECTION CURRENT TESTING</b>                 | 39          |
| <b>4.7.1 TEST SPECIFICATION</b>                      | 39          |
| <b>4.7.2 TEST PROCEDURE</b>                          | 39          |
| <b>4.7.3 TEST SETUP</b>                              | 39          |
| <b>4.7.4 TEST RESULTS</b>                            | 40          |
| <b>4.8 VOLTAGE INTERRUPTION/DIPS TESTING</b>         | 41          |
| <b>4.8.1 TEST SPECIFICATION</b>                      | 41          |
| <b>4.8.2 TEST PROCEDURE</b>                          | 41          |
| <b>4.8.3 TEST SETUP</b>                              | 41          |
| <b>4.8.4 TEST RESULTS</b>                            | 42          |
| <b>5 . EUT TEST PHOTO</b>                            | 43          |
| <b>6 . PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS</b> | 44          |

## 1. TEST SUMMARY

Test Procedures According To The Technical Standards:

ETSI EN 301 489-1 V2.2.3 (2019-11)

ETSI EN 301 489-17 V3.3.1 (2024-09)

| <b>EMC Emission</b>                |                                   |                          |          |        |
|------------------------------------|-----------------------------------|--------------------------|----------|--------|
| Standard                           | Test Item                         | Limit                    | Judgment | ReNovk |
| EN 55032:<br>2015+A1:2020+A11:2020 | Conducted Emission                | Class B                  | N/A      |        |
|                                    | Radiated Emission                 | Class B                  | PASS     |        |
| EN IEC<br>61000-3-2:2019+A2:2024   | Harmonic Current Emission         | Class A or D<br>NOTE (2) | N/A      |        |
| EN<br>61000-3-3:2013+A2:2021       | Voltage Fluctuations &<br>Flicker | -----                    | N/A      |        |
| <b>EMC Immunity</b>                |                                   |                          |          |        |
| Section<br>EN 55035:2017+A11:2020  | Test Item                         | Performance<br>Criteria  | Judgment | ReNovk |
| EN 61000-4-2:2009                  | Electrostatic Discharge           | B                        | PASS     |        |
| EN IEC 61000-4-3: 2020             | RF electromagnetic field          | A                        | PASS     |        |
| EN 61000-4-4: 2012                 | Fast transients                   | B                        | N/A      |        |
| EN 61000-4-5: 2014+A1:2017         | Surges                            | B                        | N/A      |        |
| EN IEC 61000-4-6: 2023             | Injected Current                  | A                        | N/A      |        |
| EN IEC 61000-4-11:2020             | Volt. Interruptions Volt.<br>Dips | B / C / C<br>NOTE (3)    | N/A      |        |

### NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) The power consumption of EUT is less than 75W and no Limits apply.

(3) Voltage dip: 100% reduction – Performance Criteria **B**

    Voltage dip: 30% reduction – Performance Criteria **C**

    Voltage Interruption: 100% Interruption – Performance Criteria **C**

(4) For client's request and manual description, the test will not be executed.

## 1.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$  · where expended uncertainty **U** is based on a standard uncertainty multiplied by a coverage factor of **k=2** · providing a level of confidence of approximately **95 %** ·

### A. Conducted Measurement :

| Test Site | Method | Measurement Frequency Range | U · (dB) | NOTE |
|-----------|--------|-----------------------------|----------|------|
| C01       | ANSI   | 150 KHz ~ 30MHz             | 1.94     |      |

### B. Radiated Measurement :

| Test Site | Method | Measurement Frequency Range | Ant.<br>H / V | U · (dB) | NOTE |
|-----------|--------|-----------------------------|---------------|----------|------|
| OS01      | ANSI   | 30MHz ~ 200MHz              | V             | 3.82     |      |
|           |        | 30MHz ~ 200MHz              | H             | 3.60     |      |
|           |        | 200MHz ~ 1,000MHz           | V             | 3.86     |      |
|           |        | 200MHz ~ 1,000MHz           | H             | 3.94     |      |
| OS02      | ANSI   | 30MHz ~ 200MHz              | V             | 2.48     |      |
|           |        | 30MHz ~ 200MHz              | H             | 2.16     |      |
|           |        | 200MHz ~ 1,000MHz           | V             | 2.50     |      |
|           |        | 200MHz ~ 1,000MHz           | H             | 2.66     |      |

| Test Site | Method | Measurement Frequency Range | U · (dB) | NOTE |
|-----------|--------|-----------------------------|----------|------|
| OS03      |        | 1GHz ~6000GHz               | 5.0      |      |

## 2. GENERAL INFORMATION

### GENERAL DESCRIPTION OF EUT

|                        |                                                                                              |
|------------------------|----------------------------------------------------------------------------------------------|
| Equipment              | Anti-loss keyfinder                                                                          |
| Trade Name             | N/A                                                                                          |
| Model Name             | MO9218                                                                                       |
| Serial Model           | N/A                                                                                          |
| Model Difference       | All types of circuits and RF modules are the same, this report only test mode name: MO9218 . |
| Frequency Bands:       | 2402-2480MHz                                                                                 |
| Modulation Mode:       | GFSK, 8DPSK, $\pi/4$ DQPSK                                                                   |
| Power Rating           | Input: 3V=0.2A(CR2032)                                                                       |
| Antenna:               | PCB Antenna                                                                                  |
| Connecting I/O Port(s) | Please refer to the User's Manual                                                            |
| Hardware Version       | /                                                                                            |
| Software Version       | /                                                                                            |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

## 2.1 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description    |
|--------------|----------------|
| Mode 1       | Normal working |

| <b>For Conducted Test</b> |                |
|---------------------------|----------------|
| Final Test Mode           | Description    |
| Mode 1                    | Normal working |

| <b>For Radiated Test</b> |                |
|--------------------------|----------------|
| Final Test Mode          | Description    |
| Mode 1                   | Normal working |

| <b>For EMS Test</b> |                |
|---------------------|----------------|
| Final Test Mode     | Description    |
| Mode 1              | Normal working |

NOTE: The test modes were carried out for all operation modes. The final test mode of the EUT was the worst test mode for EMI, and its test data was showed.

**2.2 DESCRIPTION OF TEST SETUP**

**EUT**

### 2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment           | Mfr/Brand | Model/Type No. | Series No. | Note |
|------|---------------------|-----------|----------------|------------|------|
| E-1  | Anti-loss keyfinder | N/A       | MO9218         | N/A        | EUT  |
|      |                     |           |                |            |      |
|      |                     |           |                |            |      |
|      |                     |           |                |            |      |

| Item | Shielded Type | Ferrite Core | Length | Note |
|------|---------------|--------------|--------|------|
| C-1  | N/A           | N/A          | N/A    | N/A  |
|      |               |              |        |      |
|      |               |              |        |      |
|      |               |              |        |      |
|      |               |              |        |      |
|      |               |              |        |      |
|      |               |              |        |      |

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.

**2.4 MEASUREMENT INSTRUMENTS LIST****CONDUCTED EMISSION**

| Item | Kind of Equipment     | Manufacturer | Type No.   | Serial No. | Last calibration | Calibrated until | Calibration period |
|------|-----------------------|--------------|------------|------------|------------------|------------------|--------------------|
| 1    | LISN                  | R&S          | ENV216     | 101313     | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 2    | LISN                  | SCHWARZBECK  | NNLK 8129  | 8129245    | Dec. 25, 2024    | Dec. 24, 2025    | 1 year             |
| 3    | Pulse Limiter         | SCHWARZBECK  | VTSD 9561F | 9716       | Dec. 25, 2024    | Dec. 24, 2025    | 1 year             |
| 4    | 50Ω Switch            | ANRITSU CORP | MP59B      | 6200983704 | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 5    | Test Cable            | N/A          | C01        | N/A        | Dec. 20, 2024    | Dec. 19, 2025    | 1 year             |
| 6    | Test Cable            | N/A          | C02        | N/A        | Dec. 20, 2024    | Dec. 19, 2025    | 1 year             |
| 7    | Test Cable            | N/A          | C03        | N/A        | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 8    | EMI Test Receiver     | R&S          | ESCI       | 101160     | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 9    | Passive Voltage Probe | ESH2-Z3      | R&S        | 100196     | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 10   | Triple-Loop Antenna   | EVERFINE     | LIA-2      | 11020003   | Dec. 25, 2024    | Dec. 24, 2025    | 1 year             |
| 11   | Absorbing Clamp       | R&S          | MDS-21     | 100423     | Dec. 25, 2024    | Dec. 24, 2025    | 1 year             |

**RADIATED TEST SITE**

| Item | Kind of Equipment | Manufacturer | Type No.    | Serial No. | Last calibration | Calibrated until | Calibration period |
|------|-------------------|--------------|-------------|------------|------------------|------------------|--------------------|
| 1    | Bilog Antenna     | TESEQ        | CBL6111D    | 31216      | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 2    | Test Cable        | N/A          | R-01        | N/A        | Dec. 25, 2024    | Dec. 24, 2025    | 1 year             |
| 3    | Test Cable        | N/A          | R-02        | N/A        | Dec. 25, 2024    | Dec. 24, 2025    | 1 year             |
| 4    | EMI Test Receiver | R&S          | ESCI-7      | 101318     | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 5    | Antenna Mast      | EM           | SC100_1     | N/A        | N/A              | N/A              | N/A                |
| 6    | Turn Table        | EM           | SC100       | 060531     | N/A              | N/A              | N/A                |
| 7    | 50Ω Switch        | Anritsu Corp | MP59B       | 6200983705 | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 8    | Spectrum Analyzer | Aglient      | E4407B      | MY45108040 | Dec. 18, 2024    | Dec. 17, 2025    | 1 year             |
| 9    | Horn Antenna      | EM           | EM-AH-10180 | 2011071402 | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 10   | Amplifier         | EM           | EM-30180    | 060538     | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |

**HARMONICS AND FILCK**

| Item | Kind of Equipment  | Manufacturer | Type No. | Serial No. | Last calibration | Calibrated until | Calibration period |
|------|--------------------|--------------|----------|------------|------------------|------------------|--------------------|
| 1    | Harmonic & Flicker | EM TEST      | DPA500   | 0303-04    | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |

|   |                 |         |        |         |               |               |        |
|---|-----------------|---------|--------|---------|---------------|---------------|--------|
| 2 | AC Power Source | EM TEST | ACS500 | 0203-01 | Dec. 17, 2024 | Dec. 16, 2025 | 1 year |
|---|-----------------|---------|--------|---------|---------------|---------------|--------|

### ESD

| Item | Kind of Equipment  | Manufacturer | Type No. | Serial No. | Last calibration | Calibrated until | Calibration period |
|------|--------------------|--------------|----------|------------|------------------|------------------|--------------------|
| 1    | ESD TEST GENERATOR | SCHAFFNER    | NSG438   | 859        | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |

### RS

| Item | Kind of Equipment      | Manufacturer | Type No.     | Serial No. | Last calibration | Calibrated until | Calibration period |
|------|------------------------|--------------|--------------|------------|------------------|------------------|--------------------|
| 1    | Signal Generator       | R&S          | SMT06        | 832080/007 | Dec. 26, 2024    | Dec. 25, 2025    | 1 year             |
| 2    | Log-Bicon Antenna      | Schwarzbeck  | VULB9161     | 4022       | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 3    | Power Amplifier        | AR           | 150W1000M1   | 320946     | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 4    | Microwave Horn Antenna | AR           | AT4002A      | 321467     | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |
| 5    | Power Amplifier        | AR           | 25MO9218 G4A | 308598     | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |

### SURGE, EFT/BURST, VOLTAGE INTERRUPTION/DIPS

| Item | Kind of Equipment | Manufacturer | Type No.       | Serial No. | Last calibration | Calibrated until | Calibration period |
|------|-------------------|--------------|----------------|------------|------------------|------------------|--------------------|
| 1    | Surge Generator   | EVERFINE     | EMS61000-5A    | 1101002    | Dec. 13, 2024    | Dec. 12, 2025    | 1 year             |
| 2    | DIPS Generator    | EVERFINE     | EMS61000-11K   | 1011002    | Dec. 13, 2024    | Dec. 12, 2025    | 1 year             |
| 3    | EFT/B Generator   | EVERFINE     | EMS61000-4A-V2 | 1012005    | Dec. 13, 2024    | Dec. 12, 2025    | 1 year             |

### INJECTION CURRENT

| Item | Kind of Equipment | Manufacturer | Type No.    | Serial No. | Last calibration | Calibrated until | Calibration period |
|------|-------------------|--------------|-------------|------------|------------------|------------------|--------------------|
| 1    | Signal Generator  | IFR          | 2023A       | 202301/368 | Dec. 25, 2024    | Dec. 24, 2025    | 1 year             |
| 2    | Power Amplifier   | AR           | 75A250AM1   | 0320709    | Dec. 25, 2024    | Dec. 24, 2025    | 1 year             |
| 3    | CDN               | FCC          | FCC-801-M2  | 06043      | Dec. 13, 2024    | Dec. 12, 2025    | 1 year             |
| 4    | EM Clamp          | FCC          | F-203I-23MM | 504        | Dec. 13, 2024    | Dec. 12, 2025    | 1 year             |

### 2.4.8 MF

| Item | Kind of Equipment | Manufacturer | Type No.    | Serial No. | Last calibration | Calibrated until | Calibration period |
|------|-------------------|--------------|-------------|------------|------------------|------------------|--------------------|
| 1    | Generator         | EVERFINE     | EMS61000-8K | 1007001    | Dec. 17, 2024    | Dec. 16, 2025    | 1 year             |

### 3. EMC EMISSION TEST

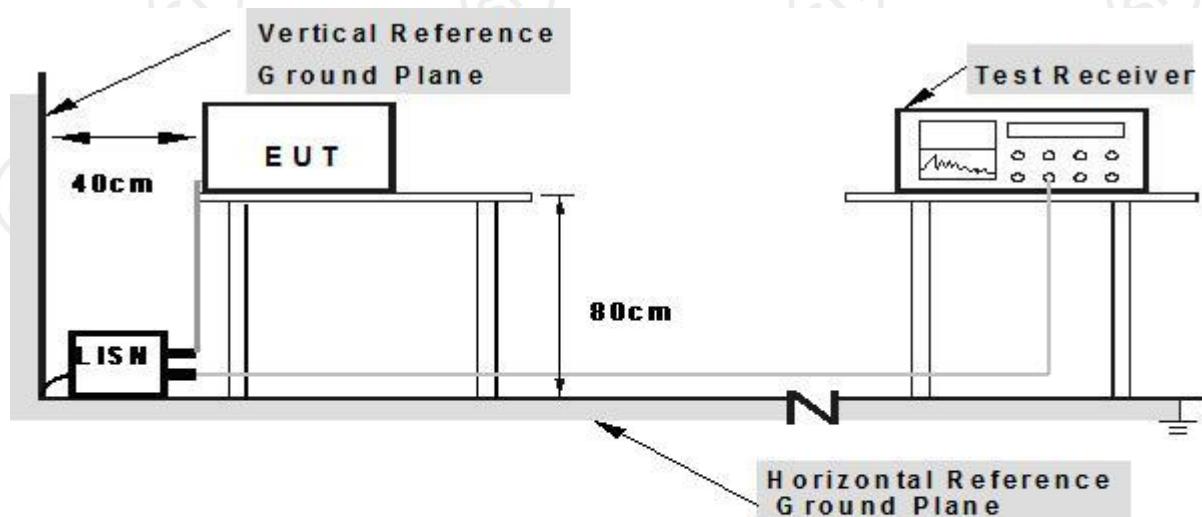
#### 3.1 CONDUCTED EMISSION MEASUREMENT

##### 3.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150KHz-30MHz)

| FREQUENCY (MHz) | Class A (dBuV) |         | Class B (dBuV) |           |
|-----------------|----------------|---------|----------------|-----------|
|                 | Quasi-peak     | Average | Quasi-peak     | Average   |
| 0.15 -0.5       | 79.00          | 66.00   | 66 - 56 *      | 56 - 46 * |
| 0.50 -5.0       | 73.00          | 60.00   | 56.00          | 46.00     |
| 5.0 -30.0       | 73.00          | 60.00   | 60.00          | 50.00     |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " Novked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

### 3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

### 3.1.3 TEST SETUP



**Note:** 1. Support units were connected to second LISN.  
2. Both of LISNs (A and B) are 80 cm from EUT and at least 80 cm from other units and other metal planes

### 3.1.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.2 Unless otherwise a special operating condition is specified in the follows during the testing.

### 3.2 RADIATED EMISSION MEASUREMENT

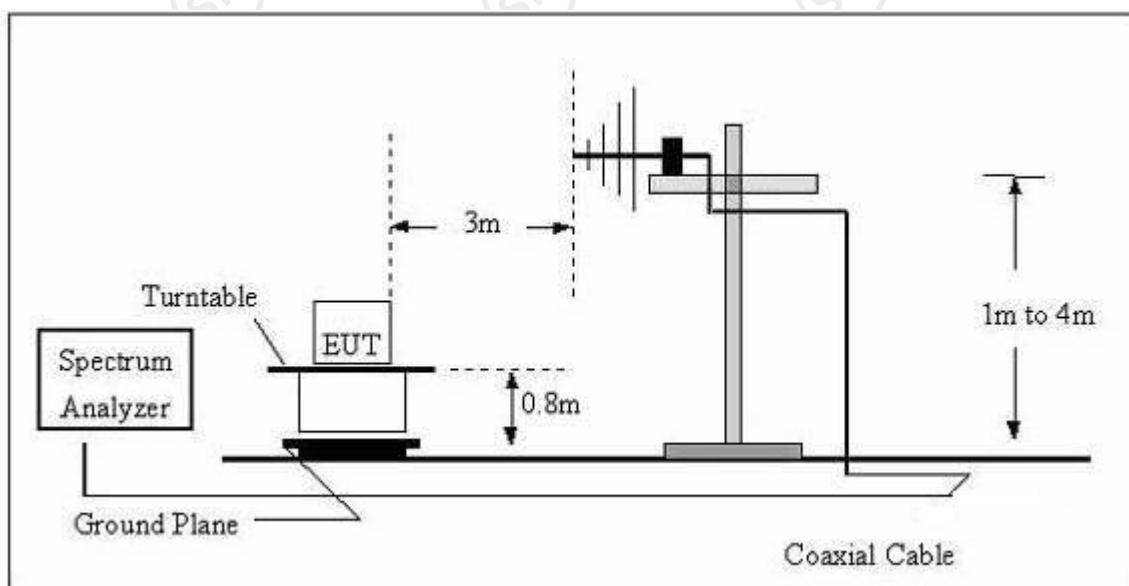
#### 3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT (Below 1000MHz)

| FREQUENCY (MHz) | Class A (at 10m) |    | Class B (at 10m) |    |
|-----------------|------------------|----|------------------|----|
|                 | dBuV/m           |    | dBuV/m           |    |
| 30 – 230        |                  | 40 |                  | 30 |
| 230 – 1000      |                  | 47 |                  | 37 |

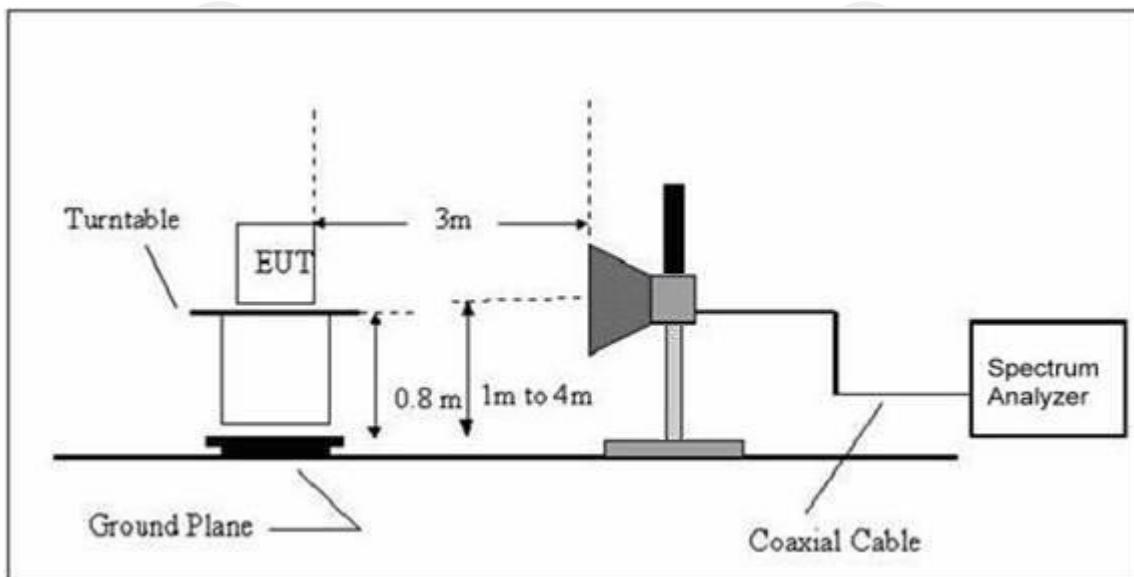
#### 3.2.2 LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz) | Class A (at 10m) dBuV/m |     | Class B (at 10m) dBuV/m |     |
|-----------------|-------------------------|-----|-------------------------|-----|
|                 | Peak                    | Avg | Peak                    | Avg |
| 1000-3000       | 76                      | 56  | 70                      | 50  |
| 3000-6000       | 80                      | 60  | 74                      | 54  |

Notes:


- (1) The limit for radiated test was performed according to as following:  
EN55032.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### 3.2.3 TEST PROCEDURE

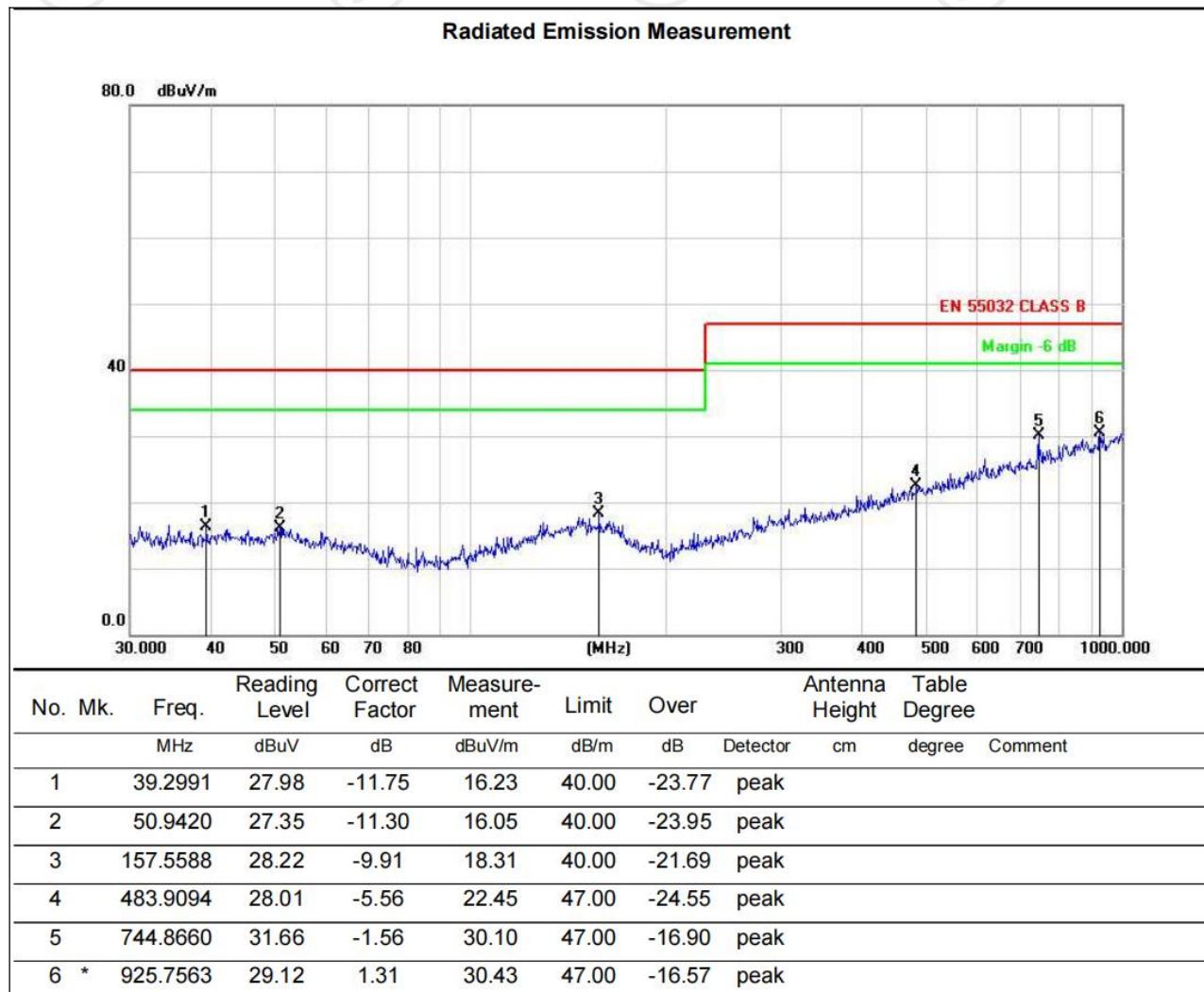

- a. The measuring distance of at 10 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then Novked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

### 3.2.4 TEST SETUP

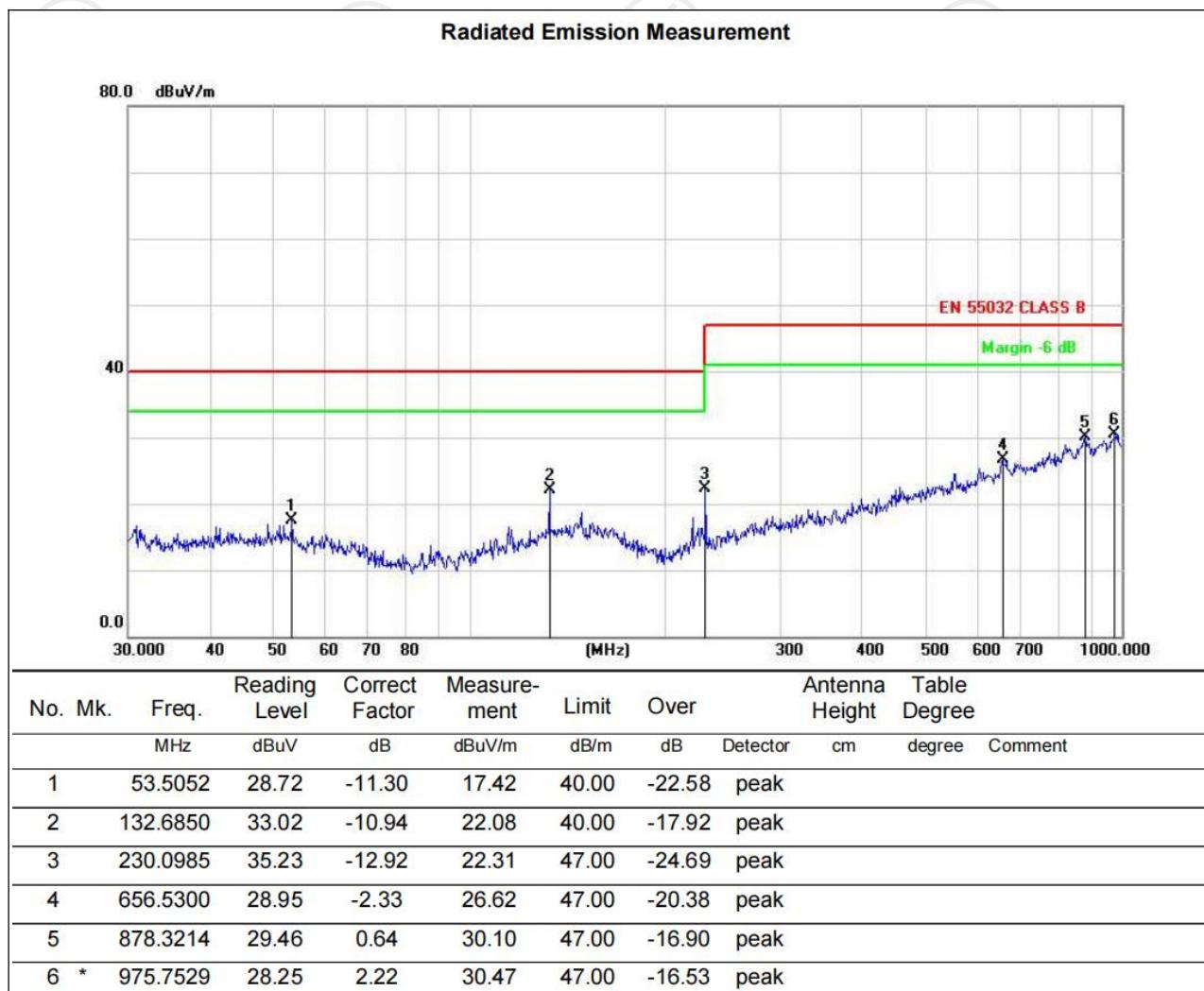
(A) Radiated Emission Test Set-Up Frequency Below 1 GHz



(B) Radiated Emission Test Set-Up Frequency Above 1GHz




### 3.2.5 EUT OPERATING CONDITIONS


The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

**3.2.6 TEST RESULTS (30-1000MHz)**

|               |                     |                     |            |
|---------------|---------------------|---------------------|------------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218     |
| Temperature : | 24 °C               | Relative Humidity : | 54%        |
| Pressure :    | 1010 hPa            | Polarization :      | Horizontal |
| Test Power :  | DC 3V               | Test Mode :         | Mode 1     |



|               |                     |                     |          |
|---------------|---------------------|---------------------|----------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218   |
| Temperature : | 24 °C               | Relative Humidity : | 54%      |
| Pressure :    | 1010 hPa            | Polarization :      | Vertical |
| Test Power :  | DC 3V               | Test Mode :         | Mode 1   |



**3.2.7 TEST RESULTS(1000-6000)**

|               |                     |                     |        |
|---------------|---------------------|---------------------|--------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218 |
| Temperature : | 24 °C               | Relative Humidity : | 54 %   |
| Pressure :    | 1010 hPa            |                     |        |
| Test Power :  | DC 3V               | Test Mode :         | Mode 1 |

| Polar(H/V) | Frequency | Meter Reading | Factor | Emission level | Limits | Margin | Detector Type |
|------------|-----------|---------------|--------|----------------|--------|--------|---------------|
|            | (Hz)      | (dBm)         | (dB)   | (dBm)          | (dBm)  | (dB)   |               |
| V          | 1762.84   | 66.38         | -15.21 | 51.17          | 70     | -18.83 | peak          |
| V          | 1762.84   | 46.59         | -15.21 | 31.38          | 50     | -18.62 | peak          |
| V          | 2347.65   | 62.47         | -13.31 | 49.16          | 70     | -20.84 | peak          |
| V          | 2347.65   | 44.25         | -13.31 | 30.94          | 50     | -19.06 | peak          |
| V          | 3880.27   | 63.42         | -7.13  | 56.29          | 74     | -17.71 | peak          |
| V          | 3880.27   | 47.24         | -7.13  | 40.11          | 54     | -13.89 | peak          |
| H          | 1287.33   | 62.37         | -17.84 | 44.53          | 70     | -25.47 | peak          |
| H          | 1287.33   | 52.46         | -17.84 | 34.62          | 50     | -15.38 | peak          |
| H          | 2316.28   | 62.41         | -12.96 | 49.45          | 70     | -20.55 | peak          |
| H          | 2316.28   | 47.02         | -12.96 | 34.06          | 50     | -15.94 | peak          |
| H          | 3678.52   | 62.34         | -8.85  | 53.49          | 74     | -20.51 | peak          |
| H          | 3678.52   | 47.18         | -8.85  | 38.33          | 54     | -15.67 | peak          |

**Remark:**

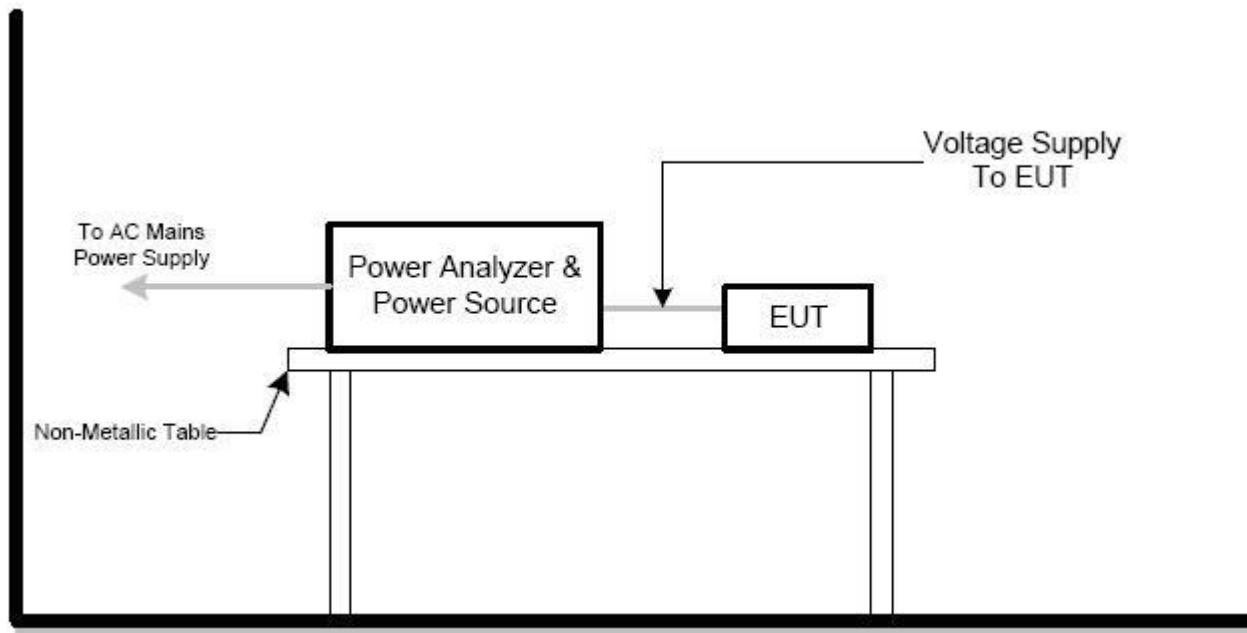
Absolute Level=Reading Level+Factor, Margin=Absolute Level-Limit

### 3.3 HARMONICS CURRENT

#### 3.3.1 LIMITS OF HARMONICS CURRENT

| IEC 555-2                          |                     |                                               |                    |                     |                                               |  |
|------------------------------------|---------------------|-----------------------------------------------|--------------------|---------------------|-----------------------------------------------|--|
| Table - I                          |                     |                                               | Table - II         |                     |                                               |  |
| Equipment Category                 | Harmonic Order n    | Max. Permissible Harmonic Current (in Ampers) | Equipment Category | Harmonic Order n    | Max. Permissible Harmonic Current (in Ampers) |  |
| Non Portable Tools or TV Receivers | Odd Harmonics       |                                               |                    | Odd Harmonics       |                                               |  |
|                                    | 3                   | 2.30                                          | TV Receivers       | 3                   | 0.80                                          |  |
|                                    | 5                   | 1.14                                          |                    | 5                   | 0.60                                          |  |
|                                    | 7                   | 0.77                                          |                    | 7                   | 0.45                                          |  |
|                                    | 9                   | 0.40                                          |                    | 9                   | 0.30                                          |  |
|                                    | 11                  | 0.33                                          |                    | 11                  | 0.17                                          |  |
|                                    | 13                  | 0.21                                          |                    | 13                  | 0.12                                          |  |
|                                    | $15 \leq n \leq 39$ | $0.15 \cdot 15/n$                             |                    | $15 \leq n \leq 39$ | $0.10 \cdot 15/n$                             |  |
|                                    | Even Harmonics      |                                               |                    | Even Harmonics      |                                               |  |
|                                    | 2                   | 1.08                                          |                    | 2                   | 0.30                                          |  |
|                                    | 4                   | 0.43                                          |                    | 4                   | 0.15                                          |  |
|                                    | 8                   | 0.30                                          |                    | DC                  | 0.05                                          |  |
|                                    | $8 \leq n \leq 40$  | $0.23 \cdot 8/n$                              |                    |                     |                                               |  |

| EN 61000-3-2/IEC 61000-3-2  |                                                                               |                    |                     |                                                 |          |
|-----------------------------|-------------------------------------------------------------------------------|--------------------|---------------------|-------------------------------------------------|----------|
| Equipment Category          | Max. Permissible Harmonic Current (in Ampers)                                 | Equipment Category | Harmonic Order n    | Max. Permissible Harmonic Current (in A) (mA/w) |          |
| Class A                     | Same as Limits Specified in 4-2.1, Table - I, but only odd harmonics required | Class D            | 3                   | 2.30                                            | 3.4      |
|                             |                                                                               |                    | 5                   | 1.14                                            | 1.9      |
|                             |                                                                               |                    | 7                   | 0.77                                            | 1.0      |
|                             |                                                                               |                    | 9                   | 0.40                                            | 0.5      |
|                             |                                                                               |                    | 11                  | 0.33                                            | 0.35     |
|                             |                                                                               |                    | $13 \leq n \leq 39$ | see Table I                                     | $3.85/n$ |
| only odd harmonics required |                                                                               |                    |                     |                                                 |          |


### 3.3.1.1 TEST PROCEDURE

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.
- b. The classification of EUT is according to section 5 of EN IEC 61000-3-2: 2000. The EUT is classified as follows:
  - Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
  - Class B: Portable tools. Portable tools.; Arc welding equipment which is not professional equipment.
  - Class C: Lighting equipment.
  - Class D: Equipment having a specified power less than or equal to 600W of the following types: Personal computers and personal computer monitors and television receivers.
- c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.
- d. For the actual test configuration, please refer to the related item –EUT Test Photos.

### 3.3.1.2 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

### 3.3.1.3 TEST SETUP



**3.3.2 TEST RESULTS**

|               |                     |                     |        |
|---------------|---------------------|---------------------|--------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218 |
| Temperature : | 25 °C               | Relative Humidity : | 45%    |
| Pressure :    | 1010 hPa            | Test Power :        | N/A    |
| Test Mode     | N/A                 |                     |        |

Note: The active input power of the EUT is less than 75 W. No limits apply for equipment with an active input power up to and including 75W

### 3.4 VOLTAGE FLUCTUATION AND FLICKERS

#### 3.4.1 LIMITS OF VOLTAGE FLUCTUATION AND FLICKERS

| Tests            | Limits                       |                              | Descriptions                     |
|------------------|------------------------------|------------------------------|----------------------------------|
|                  | IEC555-3                     | IEC/EN 61000-3-3             |                                  |
| Pst              | $\leq 1.0$ , $T_p = 10$ min. | $\leq 1.0$ , $T_p = 10$ min. | Short Term Flicker Indicator     |
| Plt              | N/A                          | $\leq 0.65$ , $T_p = 2$ hr.  | Long Term Flicker Indicator      |
| dc               | $\leq 3\%$                   | $\leq 3.3\%$                 | Relative Steady-State V-Chang    |
| d <sub>max</sub> | $\leq 4\%$                   | $\leq 4\%$                   | Maximum Relative V-change        |
| d (t)            | N/A                          | $\leq 3.3\%$ for $> 500$ ms  | Relative V-change characteristic |

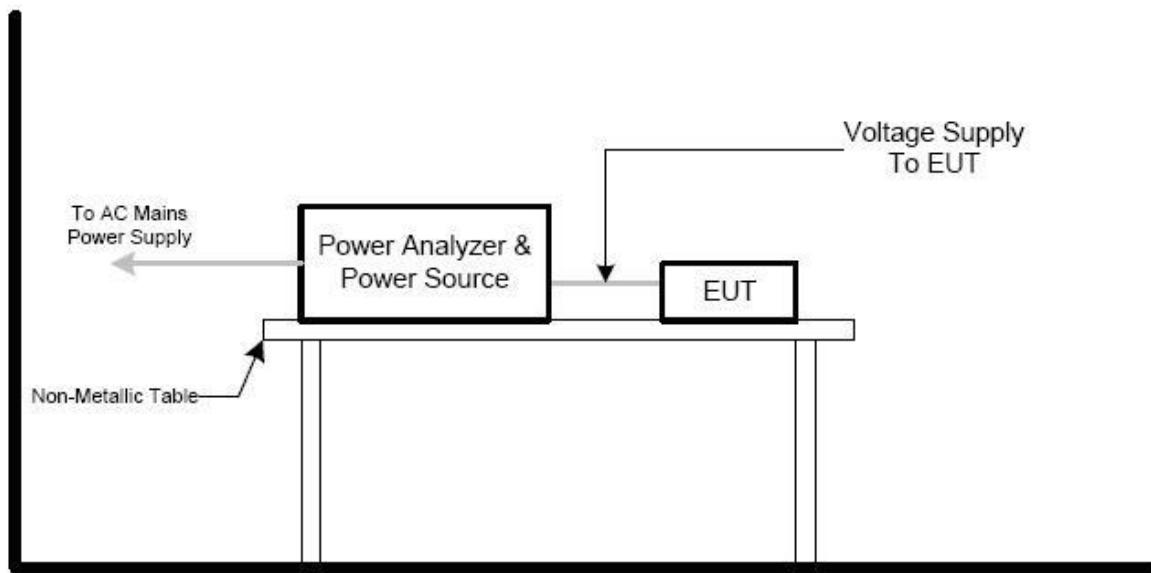
##### 3.4.1.1 TEST PROCEDURE

###### a. Harmonic Current Test:

Test was performed according to the procedures specified in Clause 5.0 of IEC555-2 and/or Sub-clause 6.2 of IEC/EN IEC 61000-3-2 depend on which standard adopted for compliance measurement.

###### b. Fluctuation and Flickers Test:

Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.


###### c. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

###### d. For the actual test configuration, please refer to the related Item –EUT Test Photos.

##### 3.4.1.2 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

##### 3.4.1.3 TEST SETUP



**3.4.2 TEST RESULTS**

|               |                     |                     |        |
|---------------|---------------------|---------------------|--------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218 |
| Temperature : | 25 °C               | Relative Humidity : | 45%    |
| Pressure :    | 1010 hPa            | Test Power :        | DC 3V  |
| Test Mode     | Mode 1              |                     |        |

| Test Parameter       | Measurement Value | Limit | ReNovks |
|----------------------|-------------------|-------|---------|
| P <sub>st</sub>      | 0.007             | 1.0   | Pass    |
| P <sub>lt</sub>      | 0.005             | 0.65  | Pass    |
| T <sub>dt(s)</sub>   | 0.031             | 0.2   | Pass    |
| d <sub>max</sub> (%) | 0.00%             | 4%    | Pass    |
| d <sub>c</sub> (%)   | 0.00%             | 3%    | Pass    |

**4. EMC IMMUNITY TEST****4.1. GENERAL PERFORMANCE CRITERIA****4.1.1 PERFORMANCE CRITERIA**

According To **EN 301489 -17**standard, The General Performance Criteria As Following:

| Criteria | During the test                                                                                                                                    | After the test                                                                                                                                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>A</b> | Shall operate as intended May show degradation of performance (see note 1)<br>Shall be no loss of function Shall be no unintentional transmissions | Shall operate as intended Shall be no degradation of performance (see note 2)<br>Shall be no loss of function Shall be no loss of stored data or user programmable functions                         |
| <b>B</b> | May show loss of function (one or more)<br>May show degradation of performance (see note 1) No unintentional transmissions                         | Functions shall be self-recoverable Shall operate as intended after recovering<br>Shall be no degradation of performance (see note 2) Shall be no loss of stored data or user programmable functions |
| <b>C</b> | May be loss of function (one or more)                                                                                                              | Functions shall be recoverable by the operator Shall operate as intended after recovering Shall be no degradation of performance (see note 2)                                                        |

NOTE 1: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: no degradation of performance after the test is understood as any degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

## PERFORMANCE FOR TT

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

## PERFORMANCE FOR TR

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

## PERFORMANCE FOR CT

The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an Acknowledgement (ACK) or Not Acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

## PERFORMANCE FOR CR

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

### 4.2 GENERAL PERFORMANCE CRITERIA TEST SETUP

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

## 4.3 ESD TESTING

### 4.3.1 TEST SPECIFICATION

|                      |                                                                                               |
|----------------------|-----------------------------------------------------------------------------------------------|
| Basic Standard:      | IEC/EN 61000-4-2                                                                              |
| Discharge Impedance: | 330 ohm / 150 pF                                                                              |
| Required Performance | B                                                                                             |
| Discharge Voltage:   | Air Discharge : 2kV/4kV/8kV (Direct)<br>Contact Discharge : 2kV/4kV (Direct/Indirect)         |
| Polarity:            | Positive & Negative                                                                           |
| Number of Discharge: | Air Discharge: min. 20 times at each test point<br>Contact Discharge: min. 200 times in total |
| Discharge Mode:      | AC Discharge                                                                                  |
| Discharge Period:    | 1 second minimum                                                                              |

### 4.3.2 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

- Contact discharge was applied to conductive surfaces and coupling planes of the EUT.

During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second.

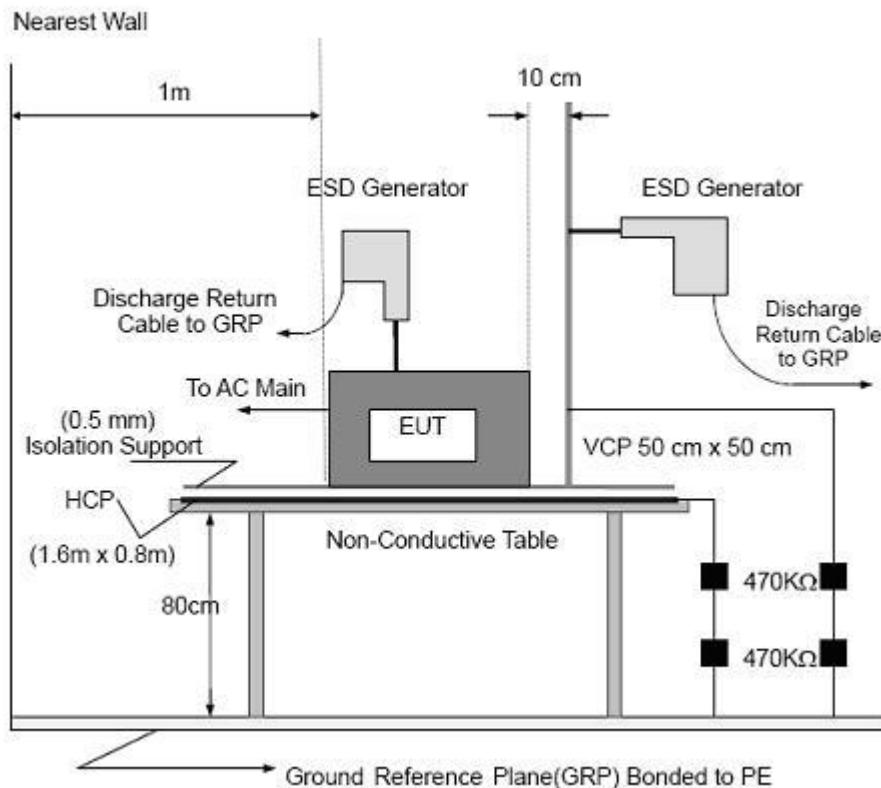
Vertical Coupling Plane (VCP):

The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.


The four faces of the EUT will be performed with electrostatic discharge.

- Air discharges at insulation surfaces of the EUT.

It was at least ten single discharges with positive and negative at the same selected point.

- For the actual test configuration, please refer to the related Item –EUT Test Photos.

### 4.3.3 TEST SETUP



Note:

#### TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

#### FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

#### 4.3.4 TEST RESULTS

|               |                     |                     |        |
|---------------|---------------------|---------------------|--------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218 |
| Temperature : | 25 °C               | Relative Humidity : | 45%    |
| Pressure :    | 1010 hPa            | Test Power :        | DC 3V  |
| Test Mode     | Mode 1              |                     |        |

| Mode | Contact Discharge (Indirect) |   |   |   |   |   |   |  | Criterion | Result |  |  |
|------|------------------------------|---|---|---|---|---|---|--|-----------|--------|--|--|
|      | Test level (kV)              | 2 |   | 4 |   | 6 |   |  |           |        |  |  |
|      |                              | + | - | + | - | + | - |  |           |        |  |  |
| HCP  | Front                        | A | A | A | A |   |   |  | B         | PASS   |  |  |
|      | Rear                         | A | A | A | A |   |   |  |           | PASS   |  |  |
|      | Left                         | A | A | A | A |   |   |  |           | PASS   |  |  |
|      | Right                        | A | A | A | A |   |   |  |           | PASS   |  |  |
| VCP  | Front                        | A | A | A | A |   |   |  | B         | PASS   |  |  |
|      | Rear                         | A | A | A | A |   |   |  |           | PASS   |  |  |
|      | Left                         | A | A | A | A |   |   |  |           | PASS   |  |  |
|      | Right                        | A | A | A | A |   |   |  |           | PASS   |  |  |

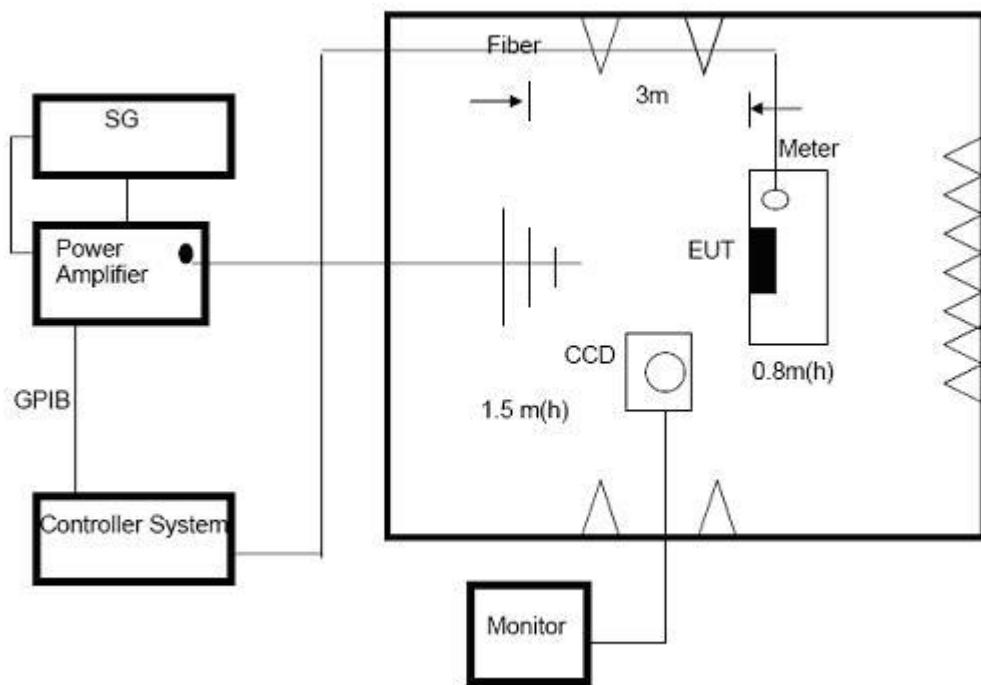
| Mode            | Air Discharge |   |   |    | Contact Discharge |   |   |   | Observation | Criterion | Result |
|-----------------|---------------|---|---|----|-------------------|---|---|---|-------------|-----------|--------|
|                 | 2             | 4 | 8 | 15 | 2                 | 4 | 6 | 8 |             |           |        |
| Test level (kV) | +             | - | + | -  | +                 | - | + | - | +           | -         | +      |
| Test Location   |               |   |   |    |                   |   |   |   |             |           |        |
| Screw           |               |   |   |    | A                 | A | A | A |             | TT,TR     | PASS   |
| enclosure       | A             | A | A | A  | A                 | A |   |   | PASS        |           |        |
|                 |               |   |   |    |                   |   |   |   |             |           |        |
|                 |               |   |   |    |                   |   |   |   |             |           |        |

## 4.4 RS TESTING

### 4.4.1 TEST SPECIFICATION

|                      |                                    |
|----------------------|------------------------------------|
| Basic Standard:      | IEC/EN IEC 61000-4-3               |
| Required Performance | A                                  |
| Frequency Range:     | 80 MHz - 1000 MHz ,1000MHz-6000MHz |
| Field Strength:      | 3 V/m                              |
| Modulation:          | 1kHz Sine Wave, 80%, AM Modulation |
| Frequency Step:      | 1 % of fundamental                 |
| Polarity of Antenna: | Horizontal and Vertical            |
| Test Distance:       | 3 m                                |
| Antenna Height:      | 1.5 m                              |
| Dwell Time:          | at least 3 seconds                 |

### 4.4.2 TEST PROCEDURE


The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber.

The testing distance from antenna to the EUT was 3 meters.

The other condition as following manner:

- a. The field strength level was 3V/m.
- b. The frequency range is swept from 80 MHz to 1000 MHz, & 1400MHz - 2700MHz with the signal 80%amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. Sweep Frequency 900 MHz, with the Duty Cycle:1/8 and Modulation: Pulse 217 Hz(if applicable)
- d. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

#### 4.4.3 TEST SETUP



Note:

##### TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

##### FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

**4.4.4 TEST RESULTS**

|               |                     |                     |        |
|---------------|---------------------|---------------------|--------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218 |
| Temperature : | 25 °C               | Relative Humidity : | 45%    |
| Pressure :    | 1010 hPa            | Test Power :        | DC 3V  |
| Test Mode     | Mode 1              |                     |        |

| Frequency Range (MHz) | RF Field Position | R.F. Field Strength                        | Azimuth | Observation | Perform. Criteria | Results | Judgment    |
|-----------------------|-------------------|--------------------------------------------|---------|-------------|-------------------|---------|-------------|
| 80~1000               | H / V             | 3 V/m (rms)<br>AM Modulated<br>1000Hz, 80% | Front   | CT,CR       | A                 | A       | <b>PASS</b> |
|                       |                   |                                            | Rear    |             |                   |         |             |
|                       |                   |                                            | Left    |             |                   |         |             |
|                       |                   |                                            | Right   |             |                   |         |             |

| Frequency Range (MHz) | RF Field Position | R.F. Field Strength                        | Azimuth | Observation | Perform. Criteria | Results | Judgment    |
|-----------------------|-------------------|--------------------------------------------|---------|-------------|-------------------|---------|-------------|
| 1000-6000             | H / V             | 3 V/m (rms)<br>AM Modulated<br>1000Hz, 80% | Front   | CT,CR       | A                 | A       | <b>PASS</b> |
|                       |                   |                                            | Rear    |             |                   |         |             |
|                       |                   |                                            | Left    |             |                   |         |             |
|                       |                   |                                            | Right   |             |                   |         |             |

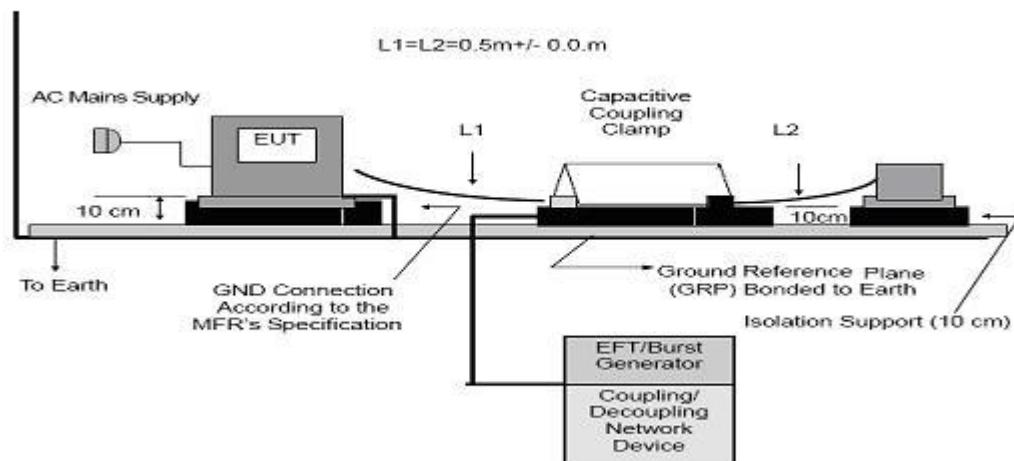
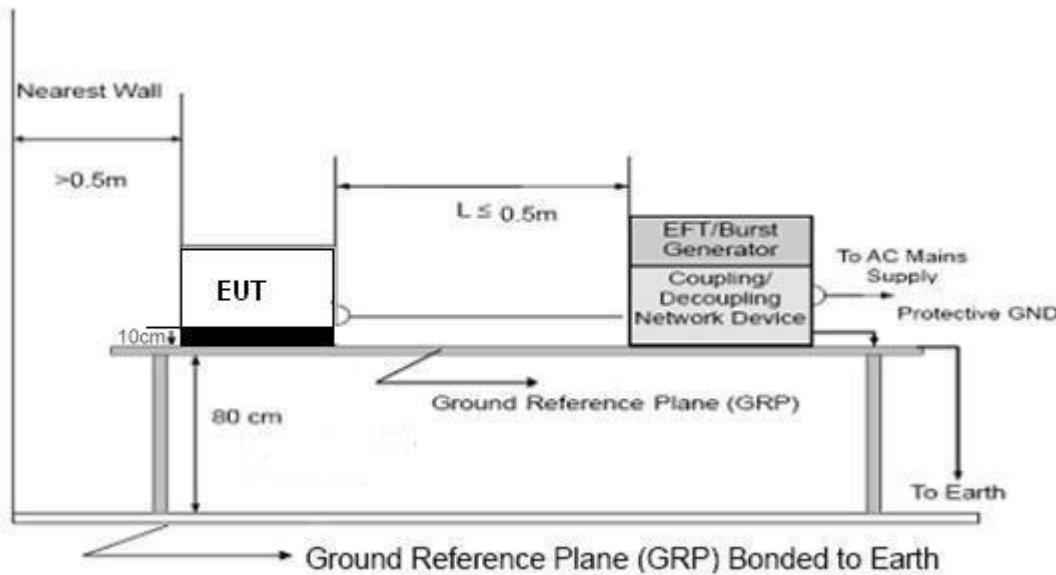
## Note:

- 1) There was no change operated with initial operating during the test.
- 2) There was not any unintentional transmission in standby mode

## 4.5 EFT/BURST TESTING

### 4.5.1 TEST SPECIFICATION

|                      |                                                   |
|----------------------|---------------------------------------------------|
| Basic Standard:      | IEC/EN 61000-4-4                                  |
| Required Performance | B                                                 |
| Test Voltage:        | Power Line : 1 kV<br>Signal/Control Line : 0.5 KV |
| Polarity:            | Positive & Negative                               |
| Impulse Frequency:   | 5 kHz                                             |
| Impulse Wave shape : | 5/50 ns                                           |
| Burst Duration:      | 15 ms                                             |
| Burst Period:        | 300 ms                                            |
| Test Duration:       | Not less than 1 min.                              |



### 4.5.2 TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m\*1m min. and 0.65mm thick min.

The other condition as following manner:

- a. The length of power cord between the coupling device and the EUT should not exceed 1 meter.
- b. Both positive and negative polarity discharges were applied.
- c. The duration time of each test sequential was 1 minute
- d. For the actual test configuration, please refer to the related Item –EUT Test Photos.

#### 4.5.3 TEST SETUP



Note:

#### TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

#### FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

**4.5.4 TEST RESULTS**

|               |                     |                     |        |
|---------------|---------------------|---------------------|--------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218 |
| Temperature : | 25 °C               | Relative Humidity : | 45%    |
| Pressure :    | 1010 hPa            | Test Power :        | N/A    |
| Test Mode     | N/A                 |                     |        |

Note: The EUT is powered by DC , so this item is not applicable.

## 4.6 SURGE TESTING

### 4.6.1 TEST SPECIFICATION

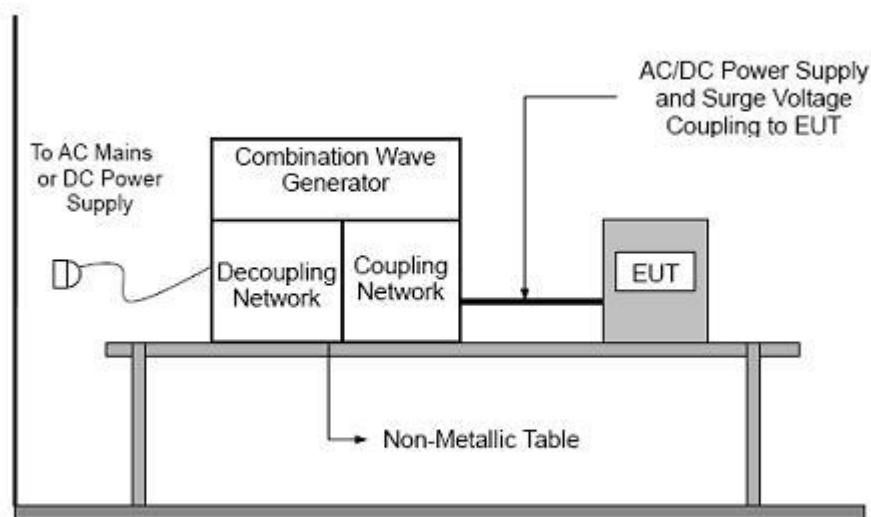
|                        |                                                                                      |
|------------------------|--------------------------------------------------------------------------------------|
| Basic Standard:        | IEC/EN 61000-4-5                                                                     |
| Required Performance   | B                                                                                    |
| Wave-Shape:            | Combination Wave<br>1.2/50 us Open Circuit Voltage<br>8 /20 us Short Circuit Current |
| Test Voltage:          | Power Line : 0.5 kV, 1 kV, 2kV                                                       |
| Surge Input/Output:    | L-N, L-PE, N-PE                                                                      |
| Generator Source:      | 2 ohm between networks                                                               |
| Impedance:             | 12 ohm between network and ground                                                    |
| Polarity:              | Positive/Negative                                                                    |
| Phase Angle:           | 0 /90/180/270                                                                        |
| Pulse Repetition Rate: | 1 time / min. (maximum)                                                              |
| Number of Tests:       | 5 positive and 5 negative at selected points                                         |

### 4.6.2 TEST PROCEDURE

#### a. For EUT power supply:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).

#### b. For test applied to unshielded unsymmetrically operated interconnection lines of EUT:


The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

#### c. For test applied to unshielded symmetrically operated interconnection /telecommunication lines of EUT:

The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

#### d. For the actual test configuration, please refer to the related Item –EUT Test Photos.

#### 4.6.3 TEST SETUP



**4.6.4 TEST RESULTS**

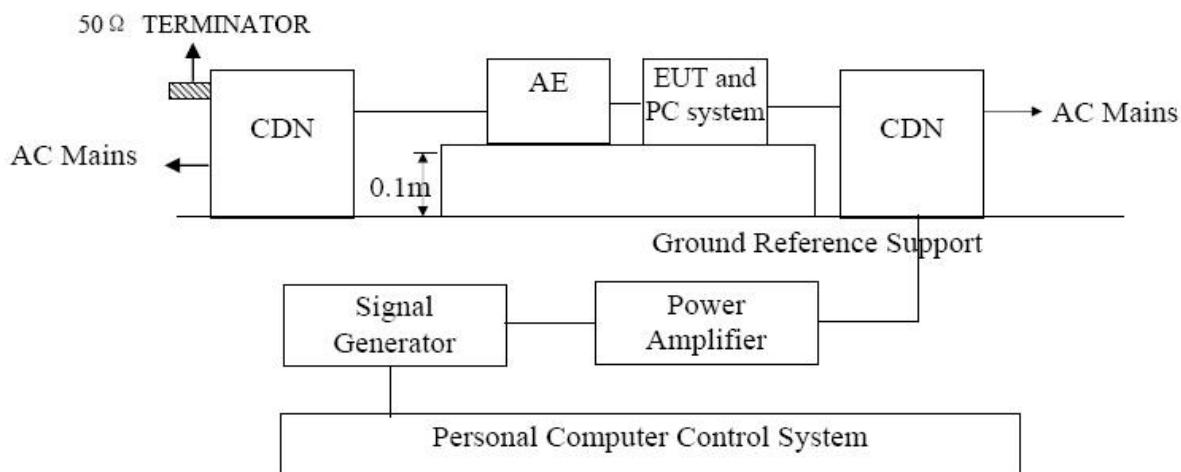
|               |                     |                     |        |
|---------------|---------------------|---------------------|--------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218 |
| Temperature : | 25 °C               | Relative Humidity : | 45%    |
| Pressure :    | 1010 hPa            | Test Power :        | N/A    |
| Test Mode     | N/A                 |                     |        |

Note: The EUT is powered by DC , so this item is not applicable.

## 4.7 INJECTION CURRENT TESTING

#### 4.7.1 TEST SPECIFICATION

|                      |                                    |
|----------------------|------------------------------------|
| Basic Standard:      | IEC/EN 61000-4-6                   |
| Required Performance | A                                  |
| Frequency Range:     | 0.15 MHz - 80 MHz                  |
| Field Strength:      | 3 Vr.m.s.                          |
| Modulation:          | 1kHz Sine Wave, 80%, AM Modulation |
| Frequency Step:      | 1 % of fundamental                 |
| Dwell Time:          | at least 3 seconds                 |


#### 4.7.2 TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m\*1m min. and 0.65mm thick min.

The other condition as following manner:

- a. The field strength level was 3V.
- b. The frequency range is swept from 150 KHz to 80 MHz, with the signal 80%amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed  $1.5 \times 10^{-3}$  decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d. For the actual test configuration, please refer to the related Item –EUT Test Photos.

### 4.7.3 TEST SETUP



For the actual test configuration, please refer to the related Item –EUT Test Photos.

**NOTE:**

## FLOOR-STANDING EQUIPMENT

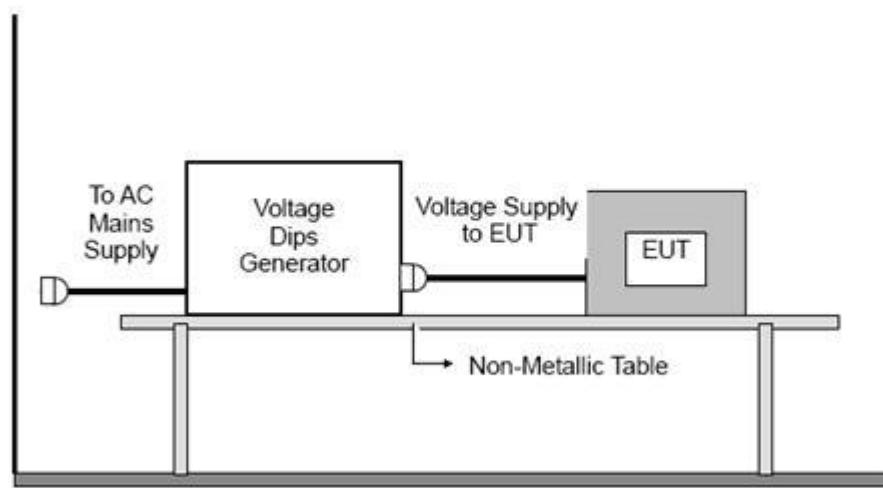
The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

**4.7.4 TEST RESULTS**

|               |                     |                     |        |
|---------------|---------------------|---------------------|--------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218 |
| Temperature : | 25 °C               | Relative Humidity : | 45%    |
| Pressure :    | 1010 hPa            | Test Power :        | N/A    |
| Test Mode     | N/A                 |                     |        |

Note: The EUT is powered by DC , so this item is not applicable.

## 4.8 VOLTAGE INTERRUPTION/DIPS TESTING

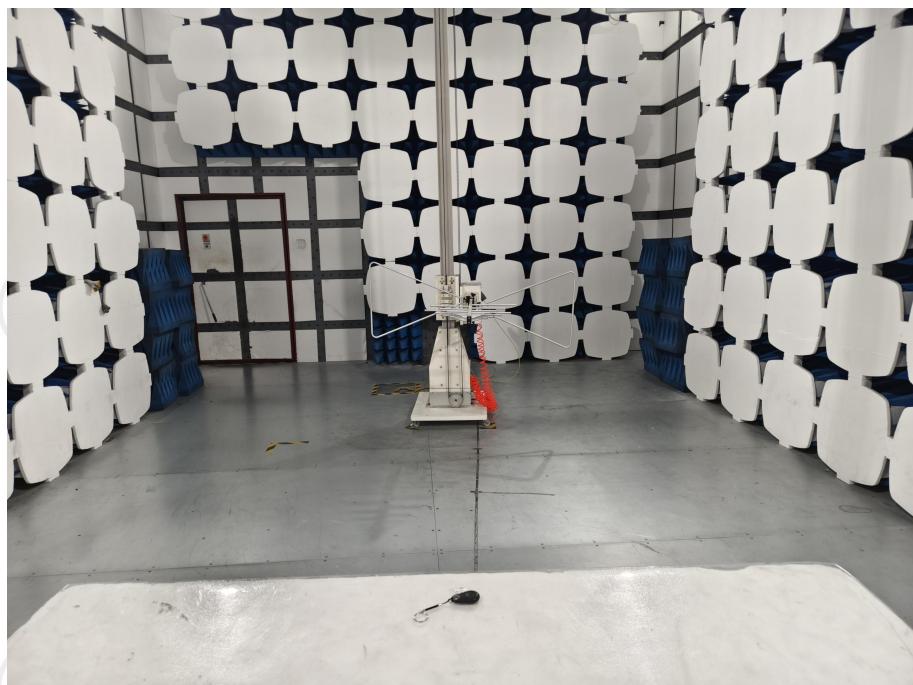

### 4.8.1 TEST SPECIFICATION

|                         |                                                                                    |
|-------------------------|------------------------------------------------------------------------------------|
| Basic Standard:         | IEC/EN IEC 61000-4-11                                                              |
| Required Performance    | 100% reduction, 0.5 Cycle<br>100% reduction, 1.0 Cycle<br>30% reduction, 25 Cycles |
| Voltage Interruptions:  | 100% reduction, 250 Cycles                                                         |
| Test Duration Time:     | Minimum three test events in sequence                                              |
| Interval between Event: | Minimum ten seconds                                                                |
| Phase Angle:            | 0°/45°/90°/135°/180°/225°/270°/315°/360°                                           |
| Test Cycle:             | 3 times                                                                            |

### 4.8.2 TEST PROCEDURE

The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

### 4.8.3 TEST SETUP



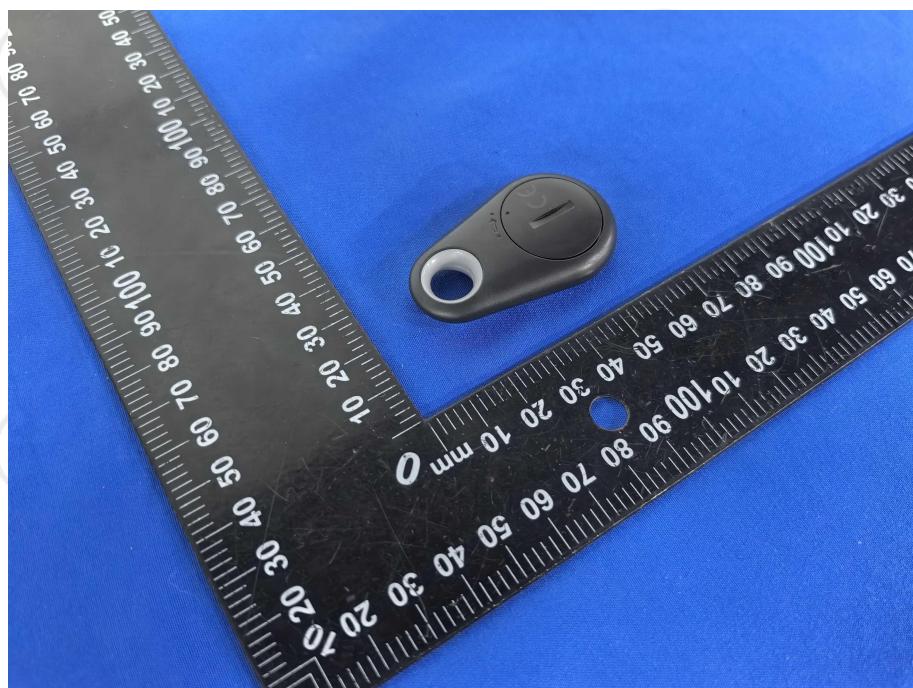
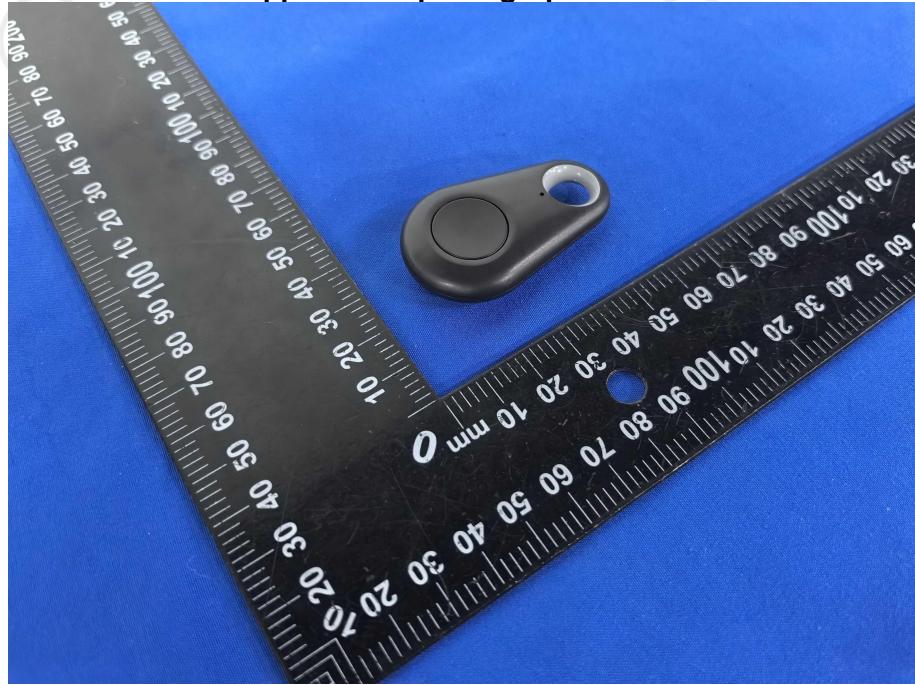

For the actual test configuration, please refer to the related Item –EUT Test Photos.

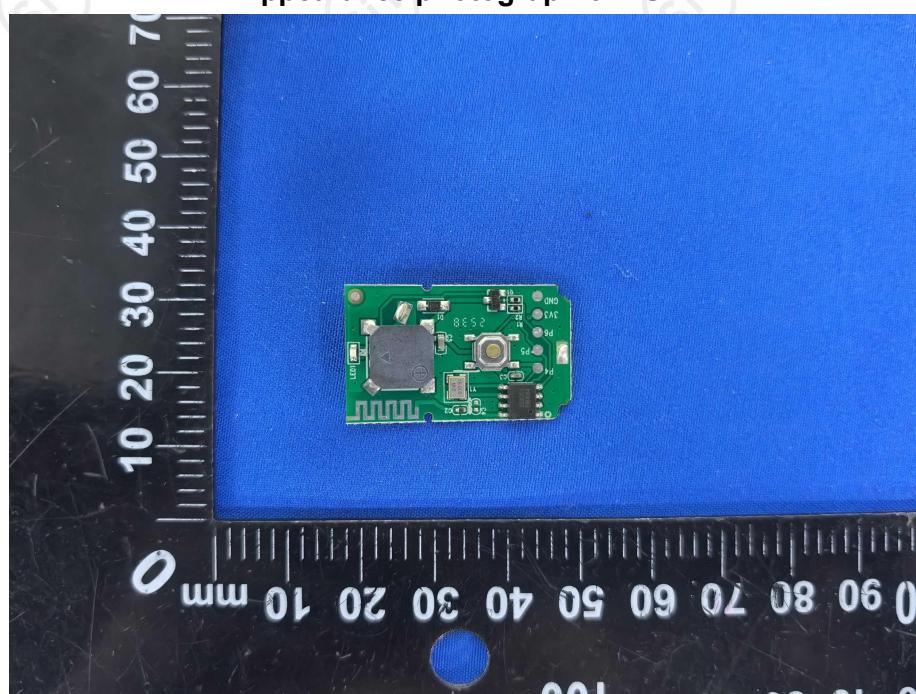
**4.8.4 TEST RESULTS**

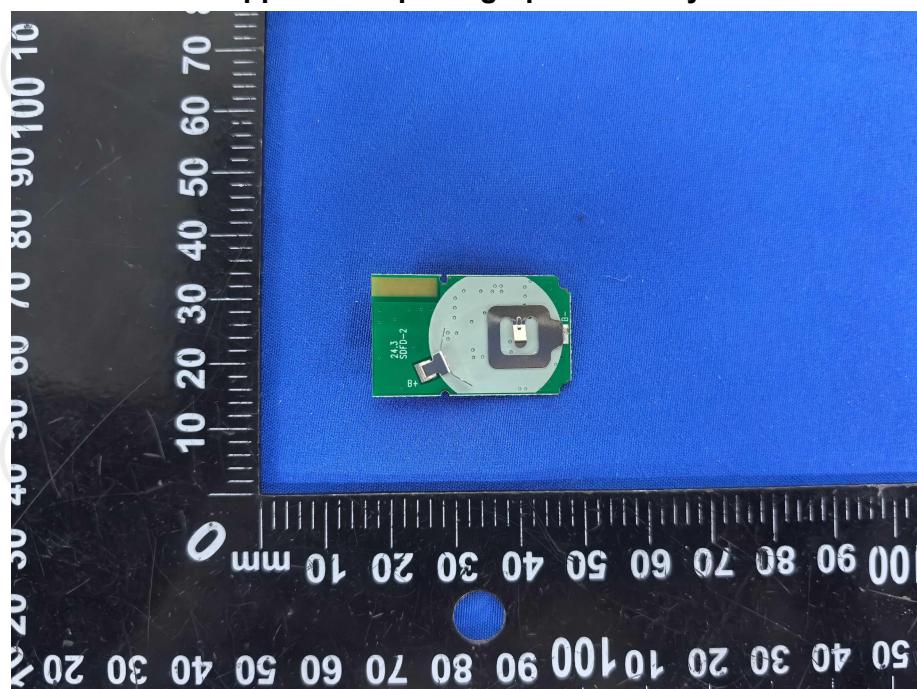
|               |                     |                     |        |
|---------------|---------------------|---------------------|--------|
| EUT :         | Anti-loss keyfinder | Model Name :        | MO9218 |
| Temperature : | 25 °C               | Relative Humidity : | 45%    |
| Pressure :    | 1010 hPa            | Test Power :        | N/A    |
| Test Mode     | N/A                 |                     |        |

Note: The EUT is powered by DC , so this item is not applicable.

**5. EUT TEST PHOTO****Radiated Measurement Photos**



## 6. PHOTOGRAPHS OF EUT


Appearance photograph of EUT




Appearance photograph of EUT



**Appearance photograph of EUT****Appearance photograph of EUT**

**Appearance photograph of EUT****Appearance photograph of EUT**

**Appearance photograph of battery**

.....End of Report.....