

TEST REPORT

中国认可 国际互认 检测 TESTING CNAS L6478

Report No : WTF24F10251662A1C

Applicant : Mid Ocean Brands B.V.

Kowloon, Hong Kong

Manufacturer : 107927

Sample Name : Backpack trolley

Sample Model : MO9179

Test Requested......: With reference to EU RoHS Directive 2011/65/EU and its

amendment Directive EU 2015/863, to determine the Lead, Mercury, Cadmium, Hexavalent Chromium, PBBs and PBDEs,

DBP, BBP, DEHP, DIBP content in the submitted sample.

Test Method Refer to next page (s)

Test Conclusion : Pass

Date of Receipt sample.....: 2024-10-30 & 2024-12-14

Testing period.....: 2024-10-30 to 2024-11-05 & 2024-12-14 to 2024-12-20

Date of Issue : 2024-12-20

Test Result : Refer to next page (s)

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink Machinery City, Xingye 4 Road, Guanglong Industrial Park, Chihua Neighborhood Committee, Chencun Town, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Signed for and on behalf of Waltek Testing Group (Foshan) Co., Ltd.

Gwing Liang

WTF24F10251662A1C

Sample photo:

MA THE E

Test Results:

1. Lead, Cadmium, Mercury, Hexavalent Chromium, PBBs and PBDEs

Test Method/Equipment:

- 1) With reference to IEC 62321-2:2021, disassembly, disjunction and mechanical sample preparation
- 2) With reference to IEC 62321-3-1:2013, screening –Lead, mercury, cadmium, total chromium and total bromine by X-ray fluorescence spectrometry
- 3) With reference to IEC 62321-4:2013+AMD1:2017 CSV, determination of Mercury by ICP-OES
- 4) With reference to IEC 62321-5:2013, determination of Lead and Cadmium by ICP-OES
- 5) With reference to IEC 62321-7-2: 2017 and IEC 62321-7-1: 2015, determination of Hexavalent Chromium by UV-Vis
- 6) With reference to IEC 62321-6:2015, determination of PBBs and PBDEs by GC-MS

Part No.	Part Description	20.	Res	ult of	XRF	Result of Wet Chemical			
- J-	the text the life with	Cd	Cd Pb		Cr	Br	Testing (mg/kg)		
1 1	Black soft plastic shell	BL	BL	BL	BL	BL	NA		
2	Black plastic wire jacket	BL	BL	BL	BL	BL	white with MA water of		
3	Black plastic jacket (USB plug)	BL	BL	BL	BL	BL	antiff antif NA ntif and		
4	Black plastic jacket (USB plug)	BL	BL	BL	BL	BL	NA WILL		
5	Silvery metal shell (USB plug)	BL	BL	BL	IN	- unici	Cr ⁶⁺ : Negative		
6	White plastic sheet (USB plug)	BL	BL	BL	BL	IN	PBBs : ND PBDEs : ND		
7.04	Golden metal pin (USB plug)	BL	BL	BL	BL	NITEST.	NA STEELER		
8	Solder(USB plug)	BL	BL	BL	BL	[EV	TEX MILIER NAEK WHITEK		
9	Golden metal pin (USB plug)	BL	BL	BL	BL	- 	K NA WITEK		
10	Red plastic wire covering	BL	BL	BL	BL	BL	NA NA		
11	White plastic wire covering	BL	BL	BL	BL	BL	NA NA		
12	Green plastic wire covering		BL	BL	BL	BL	NA -		
13	Black plastic wire covering	BL	BL	BL	BL	BL	NA		

Part No.	Part Description	3	Res	ult of	Result of Wet Chemical		
	THE SEPT STEP STEP ON	Cd	Pb	Hg	Cr	Br	Testing (mg/kg)
14	Golden metal wire	BL	BL	BL	BL	ALTER.	MA NA
15	Black plastic core (USB plug)	BL	BL	BL	BL	BL	LIE WALLE NA WALL

2. Phthalates

Test Method/Equipment:

1) With reference to IEC 62321-8:2017, determination of DBP, BBP, DEHP, DIBP by GC-MS

Serial	A CLEAN STEE STATE	Result (mg/kg)							
No.	Part No.	DBP	BBP	DEHP	DIBP				
T01	THE DEF STEE	ND	ND	ND	ND O				
T02	2	ND	ND ND	ND	ND				
T03	3 3	ND ND	ND	ND	ND-				
T04	4 4 4	ND	ND ND	333	ND				
T05	A A 5	SEE OLITEE TOLICE V	Vr. 70 2	,	L 25				
T06	6/1	ND	ND ND	123	ND				
T07	7 7	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10, 10,		- A				
T08	8, 10,	F A 50-	t de d	- Nite	WILL WILL				
T09	9	At It will	W	7 72					
T10	10 d	ND	ND	ND	ND				
T11	11	ND	ND	ND	ND				
T12	12 mil 12 mil	ND	ND	ND	ND				
T13	13	+ ND	ND	ND	ND				
T14	14		. . .	A AN AND	LITER - NI				
T15	15	, ND	ND ND	ND	ND				

Remark:

(1) Results are obtained by XRF for primary screening, and further chemical testing by ICP (for Cd, Pb, Hg), UV-VIS (for Cr⁶⁺) and GC-MS (for PBBs, PBDEs) is recommended to be performed, if the concentration exceeds the below warning value according to IEC 62321-3-1: 2013 (unit: mg/kg)

Element	Polymer	Metal	Composite Materials			
Cd	$BL \le (70-3\sigma) < IN < (130+3\sigma)$	$BL \le (70-3\sigma) < IN < (130+3\sigma)$	LOD < IN < (150+3σ) ≤ OL			
	≤OL	≤OL	at at the the			
Pb	BL \leq (700-3 σ) < IN <	BL \leq (700-3 σ) $<$ IN $<$	BL \leq (500-3 σ) $<$ IN $<$			
	(1300+3σ) ≤ OL	(1300+3σ) ≤ OL	(1500+3σ) ≤ OL			
Hg	BL \leq (700-3 σ) $<$ IN $<$	BL \leq (700-3 σ) $<$ IN $<$	BL \leq (500-3 σ) $<$ IN $<$			
	(1300+3σ) ≤ OL	(1300+3σ) ≤ OL	(1500+3σ) ≤ OL			
Cr	$BL \leq (700\text{-}3\sigma) < IN$	BL ≤ (700-3σ) <in< td=""><td>BL ≤ (500-3σ) < IN</td></in<>	BL ≤ (500-3σ) < IN			
Br	BL ≤ (300-3σ) < IN	Marie	BL ≤ (250-3σ) < IN			

BL= Below Limit

OL= Over Limit

LOD = Limit of Detection

-- = Not Regulated

- (2) "IN" expresses the inconclusive region, and further chemical testing to confirm whether it complies with the requirement of RoHS Directive.
- (3) The XRF screening test for RoHS elements the reading may be different to the actual content in the sample be of non-uniformity composition.
- (4) mg/kg =milligram per kilogram=ppm, μg/cm²= Micrograms per square centimetre.
- (5) ND = Not Detected or lower than limit of quantitation.
- (6) NA = Not Applicable, as the XRF screening test result was below the limit or as the XRF screening directly determine that test result was over the limit, it was not need to conduct the wet chemical testing.
- (7) LOQ = Limit of quantitation.

Test Items	Pb	Cd	Hg	Cr ⁶⁺		PBB	PBDE	DBP	BBP	DEHP	DIBP
Units	mg/kg	mg/kg	mg/kg	mg/kg	µg/cm ²	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
LOQ	2	2	2	8	0.1	5	5	50	50	50	50

The LOQ for single compound of PBBs and PBDEs is 5mg/kg, LOQ of Cr⁶⁺ for polymer and composite sample is 8mg/kg and LOQ of Cr⁶⁺ for metal sample is 0.1µg/cm².

(8) RoHS Requirement

Restricted Substances	Limits
Cadmium (Cd)	0.01% (100 mg/kg)
Lead (Pb)	0.1% (1000 mg/kg)
Mercury (Hg)	0.1% (1000 mg/kg)
Chromium (VI) (Cr ⁶⁺)	0.1% (1000 mg/kg)
Polybrominated Biphenyls (PBBs)	0.1% (1000 mg/kg)
Polybrominated Diphenyl Ethers (PBDEs)	0.1% (1000 mg/kg)
Dibutyl phthalate (DBP)	0.1% (1000 mg/kg)
Benzyl butyl phthalate (BBP)	0.1% (1000 mg/kg)
Di(2-ethylhexyl) phthalate (DEHP)	0.1% (1000 mg/kg)
Di-iso-butyl phthalate (DIBP)	0.1% (1000 mg/kg)

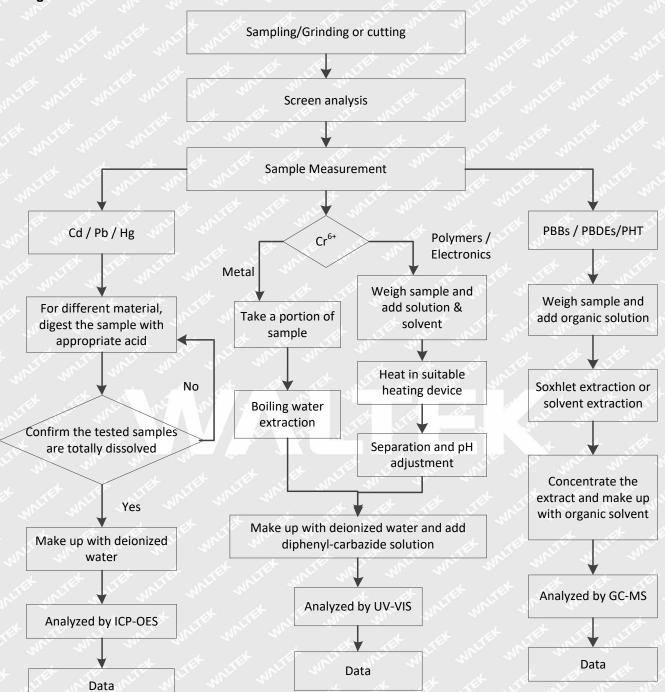
(9) According to IEC 62321-7-1:2015, determined of Cr⁶⁺ on metal sample by boiling water extraction test method, and result is shown as Positive/Negative.

Boiling water extraction:

Negative = Absence of Cr^{6+} coating, the detected concentration in boiling water extraction solution is less than $0.10\mu g/cm^2$.

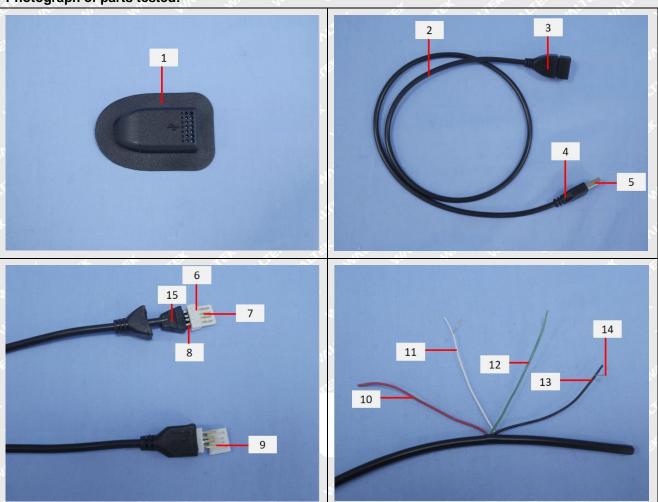
Positive = Presence of Cr^{6+} coating, the detected concentration in boiling water extraction solution is greater than $0.13\mu g/cm^2$.

Information on storage conditions and production date of the tested sample is unavailable and thus Cr⁶⁺ results represent status of the sample at the time of testing.


(10) Abbreviation:

"Pb" denotes Lead, "Cd" denotes Cadmium, "Hg" denotes Mercury, "Cr" denotes Chromium, "Cr⁶⁺" denotes Hexavalent Chromium, "Br" denotes Bromine, "PBBs" denotes Total Polybrominated Biphenyls, "PBDEs" denotes Total Polybrominated Diphenyl Ethers.

"DBP" denotes Dibutyl phthalate, "BBP" denotes Benzyl butyl phthalate (BBP), "DEHP" denotes Bis(2-ethylhexyl)-phthalate, "DIBP" denotes Diisobutyl phthalate, "PHT" denotes Phthalates.



Testing Flow chart:

Photograph of parts tested:

Remarks:

- 1. The results shown in this test report refer only to the sample(s) tested;
- 2. This test report cannot be reproduced, except in full, without prior written permission of the company;
- 3. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver;
- 4. The Applicant name and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which Waltek hasn't verified;
- 5. If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.
- 6. The sample material information (Model No. information) is provided by client, not verified by test laboratory. The samples of reference Model No. are not tested. Test laboratory not responsible for the accuracy, appropriateness, completeness and authenticity of the information provided by client.

===== End of Report =====