

EMC TEST REPORT ETSI EN 301 489-1 V2.2.3 (2019-11) ETSI EN 301 489-17 V3.2.4 (2020-09)

Prepared for:

Mid Ocean Brands B.V.

7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong
Kong

Product: Anti-loss key finder

Trade Name: N/A

Model Name: MO8648

Date of Test: October 16, 2024-October 22, 2024

Date of Report: October 22, 2024

Report Number: SIT241015160201ER-2

Prepared By:

Shenzhen SIT Testing Technology Co., Ltd.

Room 401, Building A2, The 2nd Industrial Zone of Zhu'ao, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-29173399 FAX: +86-755-29179933

E-mail: info@sit-cert.com http://www.sit-cert.com

TEST RESULT CERTIFICATION

Applicant's name	Mid Ocean Brands	s B.V.		
Address		111 King Lam Street, 0	Cheung Sha	Wan,
Manufacture's Name	114628			
Address				
Product description				
Product name	Anti-loss key finde	r		
Model and/or type reference	MO8648			
Rating(s)	· Power supplied by	1xCR2032 3V battery		
Standards		1 V2.2.3 (2019-11) 17 V3.2.4 (2020-09)		
This device described above I equipment under test (EUT) is requirements. And it is applicate	s in compliance with able only to the test	the 2014/53/EU RED ed sample identified in	Directive Art. the report.	.3.1b
This report shall not be reproduced the document may be altered or result of the document.				
Date of Test	:			
Date (s) of performance of test	ts: October	16, 2024-October 22,	2024	
Date of Issue	: October	22, 2024		
Prepared by:		Debe Y		
		Project Engine	er	
Reviewed by:	(Si ¹)	J-04870		(si ^t)
		Project Supervi	sor	
Approved by:		TESTING TECH	Serv	
(si ^T)	(Si ¹)	Telinigial Digital	10:3	(s ⁱ ¹)

	Table of Contents		Page
1. TEST SUMMARY			5
1.1 MEASUREMENT	UNCERTAINTY		6
2. GENERAL INFORM	IATION		7
2.1 DESCRIPTION OF	F TEST MODES		8
2.2 DESCRIPTION OF	F TEST SETUP		9
2.3 DESCRIPTION TE	ST PERIPHERAL AND EU	JT PERIPHERAL	10
2.4 MEASUREMENT	INSTRUMENTS LIST		.11
3 . EMC EMISSION TE	ST		13
3.1 CONDUCTED E	MISSION MEASUREMENT	Г	13
3.1.1 POWER LINI	E CONDUCTED EMISSION	1	13
3.1.2 TEST PROC			14
3.1.3 TEST SETUF			14
	TING CONDITIONS		14
	SION MEASUREMENT	OUDEMENT	15
	RADIATED EMISSION MEA RADIATED EMISSION MEA		15 15
3.2.3 TEST PROC		SUREIVIENT	15
3.2.4 TEST SETUR	- 100		16
	TING CONDITIONS		16
3.2.6 TEST RESUL			17
3.2.7 TEST RESUL			19
3.3 HARMONICS CUP	RRENT		20
()	IARMONICS CURRENT		20
3.3.1.1 TEST PRO	CEDURE		21
3.3.1.2 EUT OPER	ATING CONDITIONS		21
3.3.1.3 TEST SETU	UP		21
3.3.2 TEST RESUL	LTS		22
	UATION AND FLICKERS		23
	OLTAGE FLUCTUATION A	AND FLICKERS	23
3.4.1.1 TEST PRO			23
/ .*\.\.	ATING CONDITIONS		23
3.4.1.3 TEST SETU			23
3.4.2 TEST RESUL			24
4 . EMC IMMUNITY TE			25
4.1 GENERAL PERFO	/ / /		25
4.1.1 PERFORMA		(51)	25
	DRMANCE CRITERIA TES	T SETUP	26
4.3 ESD TESTING			27

Table of Contents	Page
4.3.1 TEST SPECIFICATION 4.3.2 TEST PROCEDURE 4.3.3 TEST SETUP 4.3.4 TEST RESULTS	27 27 28 29
4.4 RS TESTING 4.4.1 TEST SPECIFICATION 4.4.2 TEST PROCEDURE 4.4.3 TEST SETUP 4.4.4 TEST RESULTS	30 30 30 31 32
4.5 EFT/BURST TESTING 4.5.1 TEST SPECIFICATION 4.5.2 TEST PROCEDURE 4.5.3 TEST SETUP 4.5.4 TEST RESULTS	33 33 33 34 35
4.6 SURGE TESTING 4.6.1 TEST SPECIFICATION 4.6.2 TEST PROCEDURE 4.6.3 TEST SETUP 4.6.4 TEST RESULTS	36 36 36 37 38
4.7 INJECTION CURRENT TESTING 4.7.1 TEST SPECIFICATION 4.7.2 TEST PROCEDURE 4.7.3 TEST SETUP 4.7.4 TEST RESULTS	39 39 39 39 40
4.8 VOLTAGE INTERRUPTION/DIPS TESTING 4.8.1 TEST SPECIFICATION 4.8.2 TEST PROCEDURE 4.8.3 TEST SETUP 4.8.4 TEST RESULTS	41 41 41 41 42
5 . EUT TEST PHOTO	43
6. PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	44

1. TEST SUMMARY

Test Procedures According To The Technical Standards: ETSI EN 301 489-1 V2.2.3 (2019-11) ETSI EN 301 489-17 V3.2.4 (2020-09)

131 EN 301 409-17 V3.2.4	(
EMC Emission				
Standard	Test Item	Limit	Judgment	Remark
EN 55032	Conducted Emission	Class B	N/A	
EN 35032	Radiated Emission	Class B	PASS	
EN IEC 61000-3-2	Harmonic Current Emission	Class A or D	PASS	(6)
EN 61000-3-3	Voltage Fluctuations & Flicker		PASS	
	EMC Immunity			
Section EN 55035	Test Item	Performance Criteria	Judgment	Remark
EN 61000-4-2	Electrostatic Discharge	В	PASS	
EN IEC 61000-4-3	RF electromagnetic field	A	PASS	
EN 61000-4-4	Fast transients	В	N/A	
EN 61000-4-5	Surges	В	N/A	
EN 61000-4-6	Injected Current	Α	N/A	
EN IEC 61000-4-11	Volt. Interruptions Volt. Dips	B / C / C NOTE (3)	N/A	

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) The power consumption of EUT is less than 75W and no Limits apply.
- (3) Voltage dip: 100% reduction Performance Criteria B
 Voltage dip: 30% reduction Performance Criteria C
 Voltage Interruption: 100% Interruption Performance Criteria C
- (4) For client's request and manual description, the test will not be executed.

1.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$ where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$ providing a level of confidence of approximately 95 % $^{\circ}$

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U · (dB)	NOTE
C01	ANSI	150 KHz ~ 30MHz	1.94	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U · (dB)	NOTE
OS01	ANSI	30MHz ~ 200MHz	>	3.82	
		30MHz ~ 200MHz	Н	3.60	
		200MHz ~ 1,000MHz	V	3.86	
		200MHz ~ 1,000MHz	Н	3.94	
OS02	ANSI	30MHz ~ 200MHz	V	2.48	
		30MHz ~ 200MHz	Н	2.16	
		200MHz ~ 1,000MHz	V	2.50	
		200MHz ~ 1,000MHz	Η	2.66	

Test Site	Method	Measurement Frequency Range	U · (dB)	NOTE
OS03		1GHz ~6000GHz	5.0	

2. GENERAL INFORMATION

GENERAL DESCRIPTION OF EUT

LITERAL DESCRIPTION OF LOT	
Equipment	Anti-loss key finder
Trade Name	N/A
Model Name	MO8648
Serial Model	N/A
Model Difference	All types of circuits and RF modules are the same, this report only test mode name: MO8648.
Modulation Mode:	GFSK, 8DPSK, π/4 QPSK
Power Rating	Power supplied by 1xCR2032 3V battery
Antenna:	PCB Antenna
Connecting I/O Port(s)	Please refer to the User's Manual
Bluetooth Version	5.3
Hardware Version	N/A
Software Version	N/A

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.1 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description	
Mode 1	Normal Working	

For Conducted Test		
Final Test Mode	Description	
Mode 1	Normal Working	

	For Radiated Test	
Final Test Mode	Description	
Mode 1	Normal Working	

For EMS Test		
Final Test Mode	Description	
Mode 1	Normal Working	

NOTE: The test modes were carried out for all operation modes. The final test mode of the EUT was the worst test mode for EMI, and its test data was showed.

2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Anti-loss key finder	N/A	MO8648	N/A	EUT
E-2	Adapter	N/A	N/A	N/A	
	(25)	(6:12)			(6)

	1.12			
Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	N/A	
		(.5)		
		(9)		
(61)) (,			(6:1)

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

Report No.:SIT241015160201ER-2

2.4 MEASUREMENT INSTRUMENTS LIST

CONDUCTED EMISSION

	16: 1 6						Calibra
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	tion period
1	LISN	R&S	ENV216	101313	Dec. 06, 2023	Dec. 05, 2024	1 year
2	LISN	SCHWARZBE CK	NNLK 8129	8129245	Dec. 12, 2023	Dec. 11, 2024	1 year
3	Pulse Limiter	SCHWARZBE CK	VTSD 9561F	9716	Dec. 12, 2023	Dec. 11, 2024	1 year
4	50Ω Switch	ANRITSU CORP	MP59B	6200983704	Dec. 06, 2023	Dec. 05, 2024	1 year
5	Test Cable	N/A	C01	N/A	Dec. 06, 2023	Dec. 05, 2024	1 year
6	Test Cable	N/A	C02	N/A	Dec. 06, 2023	Dec. 05, 2024	1 year
7	Test Cable	N/A	C03	N/A	Dec. 06, 2023	Dec. 05, 2024	1 year
8	EMI Test Receiver	R&S	ESCI	101160	Dec. 06, 2023	Dec. 05, 2024	1 year
9	Passive Voltage Probe	ESH2-Z3	R&S	100196	Dec. 06, 2023	Dec. 05, 2024	1 year
10	Triple-Loop Antenna	EVERFINE	LIA-2	11020003	Dec. 06, 2023	Dec. 05, 2024	1 year
11	Absorbing Clamp	R&S	MDS-21	100423	Dec. 11, 2023	Dec. 10, 2024	1 year

RADIATED TEST SITE

TABLATED TEST SITE							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
12	Bilog Antenna	TESEQ	CBL6111D	31216	Dec. 06, 2023	Dec. 05, 2024	1 year
2	Test Cable	N/A	R-01	N/A	Dec. 12, 2023	Dec. 11, 2024	1 year
3	Test Cable	N/A	R-02	N/A	Dec. 12, 2023	Dec. 11, 2024	1 year
4	EMI Test Receiver	R&S	ESCI-7	101318	Dec. 06, 2023	Dec. 05, 2024	1 year
5	Antenna Mast	EM	SC100_1	N/A	N/A	N/A	N/A
6	Turn Table	EM	SC100	060531	N/A	N/A	N/A
7	50Ω Switch	Anritsu Corp	MP59B	6200983705	Dec. 06, 2023	Dec. 05, 2024	1 year
8	Spectrum Analyzer	Aglient	E4407B	MY45108040	Dec. 06, 2023	Dec. 05, 2024	1 year
9	Horn Antenna	EM	EM-AH-10180	2011071402	Dec. 06, 2023	Dec. 05, 2024	1 year
10	Amplifier	EM	EM-30180	060538	Dec. 06, 2023	Dec. 05, 2024	1 year

HARMONICS AND FILCK

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
10	Harmonic & Flicker	EM TEST	DPA500	0303-04	Dec. 06, 2023	Dec. 05, 2024	1 year

Page 12 of 47

Report No.:SIT241015160201ER-2

2	AC Power Source	EM TEST	ACS500	0203-01	Dec. 06, 2023	Dec. 05, 2024	1 year
---	--------------------	---------	--------	---------	---------------	---------------	--------

ESD

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration		Calibra tion period
1	ESD TEST GENERAT OR	SCHAFFNER	NSG438	859	Dec. 06, 2023	Dec. 05, 2024	1 year

RS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
1	Signal Generator	R&S	SMT 06	832080/007	Dec. 16, 2023	Dec. 06, 2024	1 year
2	Log-Bicon Antenna	Schwarzbeck	VULB9161	4022	Dec. 16, 2023	Dec. 06, 2024	1 year
3	Power Amplifier	AR	150W1000M1	320946	Dec. 16, 2023	Dec. 06, 2024	1 year
4	Microwave Horn Antenna	AR	AT4002A	321467	Dec. 16, 2023	Dec. 06, 2024	1 year
5	Power Amplifier	AR	25S1G4A	308598	Dec. 16, 2023	Dec. 06, 2024	1 year

SURGE, EFT/BURST, VOLTAGE INTERRUPTION/DIPS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
1	Surge Generator	EVERFINE	EMS61000-5A	1101002	Dec. 06, 2023	Dec. 05, 2024	1 year
2	DIPS Generator	EVERFINE	EMS61000-11 K	1011002	Dec. 06, 2023	Dec. 05, 2024	1 year
3	EFT/B Generator	EVERFINE	EMS61000-4A- V2	1012005	Dec. 06, 2023	Dec. 05, 2024	1 year

INJECTION CURRENT

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
1	Signal Generator	IFR	2021A	202301/368	Dec. 15, 2023	Dec. 14, 2024	1 year
2	Power Amplifier	AR	75A250AM1	0320709	Dec. 12, 2023	Dec. 11, 2024	1 year
3	CDN	FCC	FCC-801-M2	06043	Dec. 12, 2023	Dec. 11, 2024	1 year
4	EM Clamp	FCC	F-203I-23MM	504	Dec. 15, 2023	Dec. 14, 2024	1 year

2.4.8 MF

-		***						\ I
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration		Calibra tion period
	1	Generator	EVERFINE	EMS61000-8K	1007001	Dec. 06, 2023	Dec. 05, 2024	1 year

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

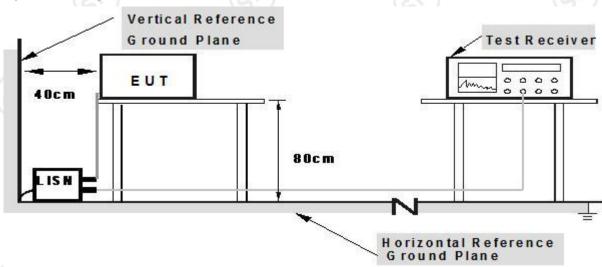
3.1.1POWER LINE CONDUCTED EMISSION (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
TREQUENCT (MITZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting		
Attenuation 10 dB			
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

(Below 1000MHz)

EDECLIENCY (MHz)	Class A (at 10m)	Class B (at 10m)
FREQUENCY (MHz)	dBuV/m	dBuV/m
30 – 230	40	30
230 – 1000	47	37

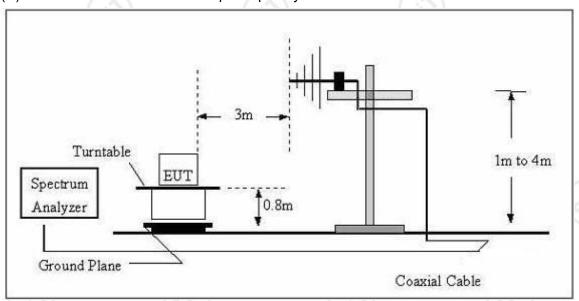
3.2.2 LIMITS OF RADIATED EMISSION MEASUREMENT

(Above 1000MHz)

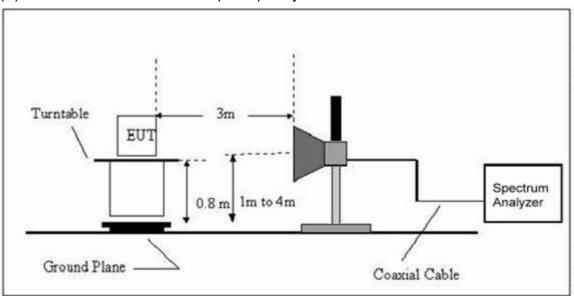
	Class A (at 10m) dBuV/m		Class B (at 10m) dBuV/m	
FREQUENCY (MHz)	Peak	Avg	Peak	Avg
1000-3000	76	56	70	50
3000-6000	80	60	74	54

Notes:

- (1) The limit for radiated test was performed according to as following: EN55032.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).


3.2.3 TEST PROCEDURE

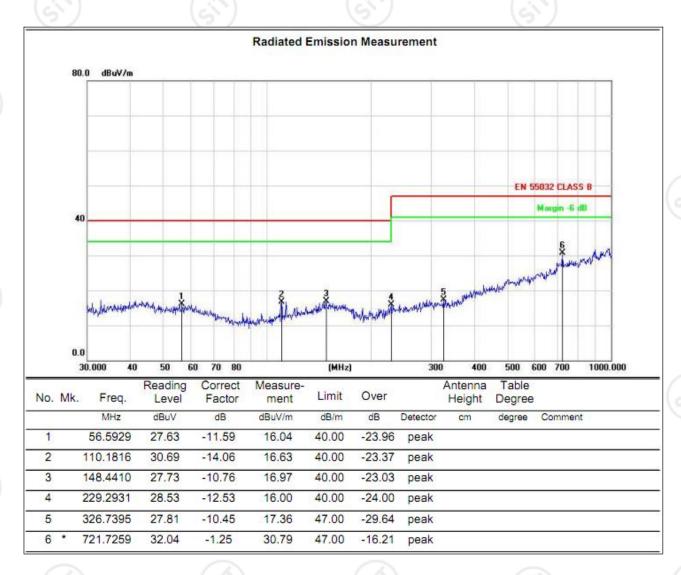
- a. The measuring distance of at 10 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.



3.2.4 TEST SETUP

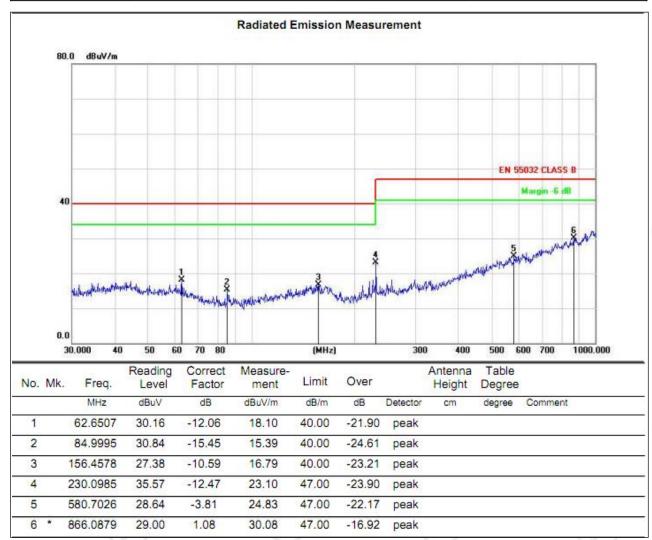
(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) Radiated Emission Test Set-Up Frequency Above 1GHz


3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS (30-1000MHz)


EUT:	Anti-loss key finder	Model Name :	MO8648
Temperature :	24 ℃	Relative Humidity:	54%
Pressure :	1010 hPa	Polarization :	Horizontal
Test Power :	DC 3V	Test Mode :	Mode 1

Page 18 of 47

EUT:	Anti-loss key finder	Model Name :	MO8648
Temperature :	24 ℃	Relative Humidity:	54%
Pressure :	1010 hPa	Polarization :	Vertical
Test Power :	DC 3V	Test Mode:	Mode 1

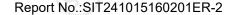
3.2.7 TEST RESULTS(1000-6000)

EUT:	Anti-loss key finder	Model Name :	MO8648
Temperature :	24 ℃	Relative Humidity:	54 %
Pressure :	1010 hPa		
Test Power :	DC 3V	Test Mode :	Mode 1

Polar(H/V)	Frequency	Meter Reading	Factor	Emission level	Limits	ts Margin	Detector
	(Hz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Type
V	1762.84	63.44	-15.21	48.23	70	-21.77	peak
V	1762.84	46.18	-15.21	30.97	50	-19.03	peak
V	2347.65	62.64	-13.31	49.33	70	-20.67	peak
V	2347.65	42.33	-13.31	29.02	50	-20.98	peak
V	3880.27	61.76	-7.13	54.63	74	-19.37	peak
G V	3880.27	43.67	-7.13	36.54	54	-17.46	peak
H	1287.33	69.58	-17.84	51.74	70	-18.26	peak
Н	1287.33	52.46	-17.84	34.62	50	-15.38	peak
Н	2316.28	62.19	-12.96	49.23	70	-20.77	peak
Н	2316.28	42.73	-12.96	29.77	50	-20.23	peak
Н	3678.52	63.81	-8.85	54.96	74	-19.04	peak
Н	3678.52	51.49	-8.85	42.64	54	-11.36	peak

Remark:

Absolute Level=Reading Level+Factor, Margin=Absolute Level-Limit



3.3 HARMONICS CURRENT

3.3.1 LIMITS OF HARMONICS CURRENT

		IEC 5	555-2		
Table - I				Table -	-
Equipment	Harmonic	Max. Permissible	Equipment	Harmonic	Max. Permissible
Category	Order	Harmonic Current	Category	Order	Harmonic Current
	n	(in Ampers)		n	(in Ampers)
	Odd Harmonics			Odd Harmonics	
	3	2.30		3	0.80
	5 7	1.14		5	0.60
	7	0.77		5 7	0.45
Non	9	0.40	TV	9	0.30
Portable	11	0.33	Receivers	11	0.17
Tools	13	0.21		13	0.12
or	15≤n≤39	0.15 · 15/n		15≤n≤39	0.10 · 15/n
TV	Even	Harmonics		Even Harmonics	
Receivers				2	0.30
	4	0.43		4	0.15
	4 8	0.30			1000 March 1884
	8≤n≤40	0.23 · 8/n		DC	0.05

	EN 6	1000-3-2/IEC	61000-3-2			
Equipment	t Max. Permissible Equipment Harmonic Max. Permissible					
Category	Harmonic Current	Category	Order	Harmonic Current		
	(in Ampers)		n	(in A)	(mA/w)	
3			3	2.30	3.4	
	Same as Limits		5	1.14	1.9	
Class A	Specified in	Class D	7	0.77	1.0	
	4-2.1, Table - I,		9	0.40	0.5	
	but only odd		11	0.33	0.35	
	harmonics required		13≤n≤39	see Table I	3.85/n	
only odd harmonics required						

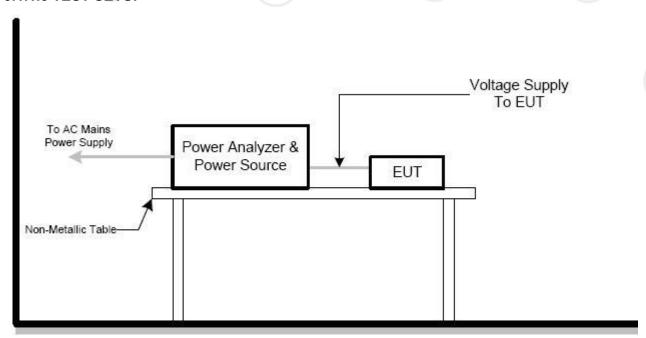
3.3.1.1 TEST PROCEDURE

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.
- b. The classification of EUT is according to section 5 of EN IEC 61000-3-2: 2019+A1:2021.The EUT is classified as follows:

Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B: Portable tools. Portable tools.; Arc welding equipment which is not professional equipment.

Class C: Lighting equipment.


Class D: Equipment having a specified power less than or equal to 600W of the following types: Personal computers and personal computer monitors and television receivers.

- c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.
- d. For the actual test configuration, please refer to the related item -EUT Test Photos.

3.1.1.2 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

3.1.1.3 TEST SETUP

3.3.2 TEST RESULTS

EUT:	Anti-loss key finder	Model Name :	MO8648
Temperature :	25 ℃	Relative Humidity:	45%
Pressure :	1010 hPa	Test Power :	PASS
Test Mode	N/A		

Note: The active input power of the EUT is less than 75 **W**. No limits apply for equipment with an active input power up to and including 75W

3.4 VOLTAGE FLUCTUATION AND FLICKERS

3.4.1 LIMITS OF VOLTAGE FLUCTUATION AND FLICKERS

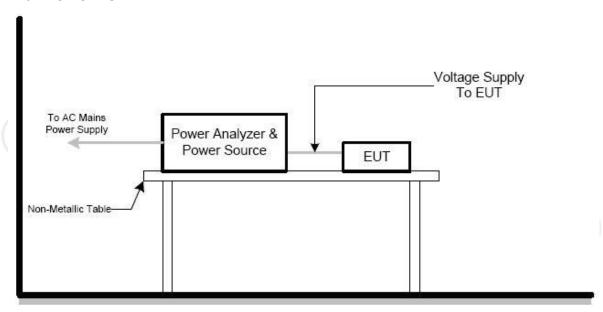
Tests	Limits		Descriptions
16212	IEC555-3	IEC/EN 61000-3-3	Descriptions
Pst	≤ 1.0, Tp= 10 min.	≤ 1.0, Tp= 10 min.	Short Term Flicker Indicator
Plt	N/A	≤ 0.65, Tp=2 hr.	Long Term Flicker Indicator
dc	≤ 3%	≤ 3.3%	Relative Steady-State V-Chang
dmax	≤ 4%	≤ 4%	Maximum Relative V-change
d (t)	N/A	≤ 3.3% for > 500 ms	Relative V-change characteristic

3.4.1.1TEST PROCEDURE

a. Harmonic Current Test:

Test was performed according to the procedures specified in Clause 5.0 of IEC555-2 and/or Sub-clause 6.2 of IEC/EN IEC 61000-3-2 depend on which standard adopted for compliance measurement.

b. Fluctuation and Flickers Test:


Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.

- c. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.
- d. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.4.1.2 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

3.4.1.3 TEST SETUP

3.4.2 TEST RESULTS

EUT:	Anti-loss key finder	Model Name :	MO8648
Temperature :	25 ℃	Relative Humidity:	45%
Pressure :	1010 hPa	Test Power :	DC 3V
Test Mode	Mode 1		

Test Parameter	Measurement Value	Limit	Remarks
P _{st}	0.007	1.0	Pass
Plt	0.005	0.65	Pass
T _{dt(s)}	0.031	0.2	Pass
d _{max} (%)	0.00%	4%	Pass
d _c (%)	0.00%	3%	Pass

4. EMC IMMUNITY TEST 4.1 GENERAL PERFORMANCE CRITERIA

4.1.1PERFORMANCE CRITERIA

According To EN 301489 -17standard, The General Performance Criteria As Following:

Criteria	During the test	After the test
A	Shall operate as intended May show degradation of performance (see note 1) Shall be no loss of function Shall be no unintentional transmissions	Shall operate as intended Shall be no degradation of performance (see note 2) Shall be no loss of function Shall be no loss of stored data or user programmable functions
В	May show loss of function (one or more) May show degradation of performance (see note 1) No unintentional transmissions	Functions shall be self-recoverable Shall operate as intended after recovering Shall be no degradation of performance (see note 2) Shall be no loss of stored data or user programmable functions
С	May be loss of function (one or more)	Functions shall be recoverable by the operator Shall operate as intended after recovering Shall be no degradation of performance (see note 2)

NOTE 1: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: no degradation of performance after the test is understood as any degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

PERFORMANCE FOR TT

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR TR

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CT

The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an Acknowledgement (ACK) or Not Acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CR

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

4.2 GENERAL PERFORMANCE CRITERIA TEST SETUP

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating condition is specified in the follows during the testing.

4.3 ESD TESTING

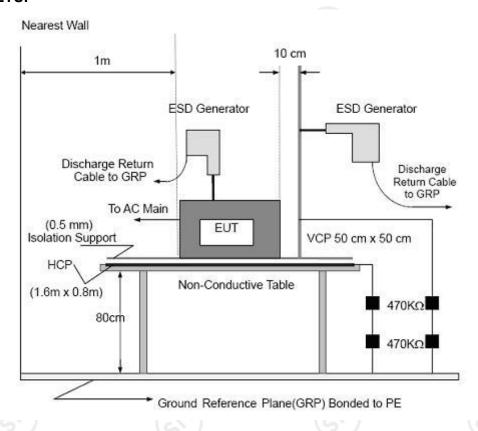
4.3.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-2
Discharge Impedance:	330 ohm / 150 pF
Required Performance	В
Discharge Voltage:	Air Discharge : 2kV/4kV/8kV (Direct)
	Contact Discharge : 2kV/4kV (Direct/Indirect)
Polarity:	Positive & Negative
Number of Discharge:	Air Discharge: min. 20 times at each test point
	Contact Discharge: min. 200 times in total
Discharge Mode:	AC Discharge
Discharge Period:	1 second minimum

4.3.2 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a. Contact discharge was applied to conductive surfaces and coupling planes of the EUT. During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second. Vertical Coupling Plane (VCP):


The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge. Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

- b. Air discharges at insulation surfaces of the EUT.
 - It was at least ten single discharges with positive and negative at the same selected point.
- c. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.3.3 TEST SETUP

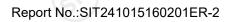

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

4.3.4 TEST RESULTS

EUT:	Anti-loss key finder	Model Name :	MO8648
Temperature :	25 ℃	Relative Humidity:	45%
Pressure :	1010 hPa	Test Power :	DC 3V
Test Mode	Mode 1		
(61)		(6)	(4)

Mode											
Test level (kV)	Test Point		2		2 4		4	- 6		Criterion	Result
Test Location	Test Point	+	-	+	-	+	-				
	Front	Α	Α	Α	Α				PASS		
НСР	Rear	Α	Α	Α	Α				PASS		
(.: \)	Left	Α	Α	Α	Α		(c	$\langle \gamma \rangle$	PASS		
(6)	Right	Α	Α	Α	Α				PASS		
	Front	Α	Α	Α	Α			В	PASS		
VOD	Rear	Α	Α	Α	Α				PASS		
VCP	Left	Α	Α	Α	Α	(21)		(PASS		
	Right	Α	Α	Α	Α	9			PASS		

Mode			Air	Dis	cha	rge	,			Co	onta	ıct [Disc	har	ge				
Test level (kV)	2	2	4	4	8	3	1	5	2	2	4	4	(3	8	8	Obser vation	Criterion	Result
Test Location	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-			
	13	6						1											PASS
enclosure	Α	Α	Α	Α	Α	Α		6.5							S			_ (9	PASS
																	TT,TR	В	

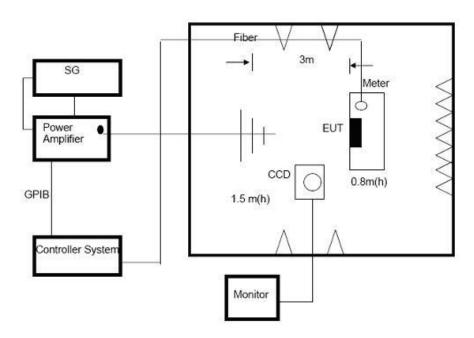
4.4 RS TESTING

4.4.1 TEST SPECIFICATION

Basic Standard:	IEC/EN IEC 61000-4-3
Required Performance	A
Frequency Range:	80 MHz - 1000 MHz ,1000MHz-6000MHz
Field Strength:	3 V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m
Antenna Height:	1.5 m
Dwell Time:	at least 3 seconds

4.4.2 TEST PROCEDURE

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber.


The testing distance from antenna to the EUT was 3 meters.

The other condition as following manner:

- a. The field strength level was 3V/m.
- b. The frequency range is swept from 80 MHz to 1000 MHz, & 1400MHz 2700MHz with the signal 80%amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. Sweep Frequency 900 MHz, with the Duty Cycle:1/8 and Modulation: Pulse 217 Hz(if applicable)
- d. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.4.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

4.4.4 TEST RESULTS

EUT:	Anti-loss key finder	Model Name :	MO8648
Temperature :	25 ℃	Relative Humidity:	45%
Pressure :	1010 hPa	Test Power :	DC 3V
Test Mode	Mode 1		
(6)	(3)	(5)	(61)

Frequency	RF Field	R.F.	Azimuth	Observation	Perform.	Results	Judgment
Range (MHz)	Position	Field Strength	Azimum		Criteria	Results	Judgment
(<u>.</u>		Front				
(3 V/m (rms)	Rear	(9))		
80~1000	H/V	AM Modulated		CT,CR	Α	Α	PASS
		1000Hz, 80%	Left				
		(317)	Dight		(1)	(1)	
(2)			Right			2	

Frequency Range (MHz)	RF Field Position		Azimuth	Observation	Perform. Criteria	Results	Judgment
(2)	(e	Front	6			
1000~6000	H/V	3 V/m (rms) AM Modulated	Rear	CT,CR	A	A	PASS
1000 0000	117 \$	1000Hz, 80%	Left	, j	A (
			Right				

Note:

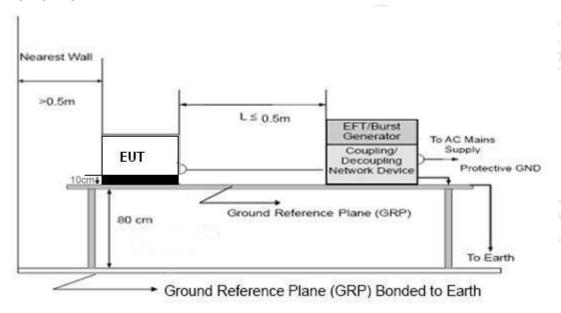
- 1) There was no change operated with initial operating during the test.
- 2) There was not any unintentional transmission in standby mode

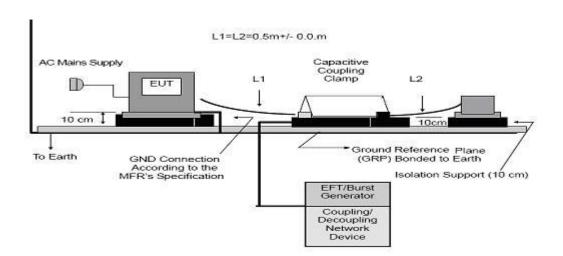
4.5 EFT/BURST TESTING

4.5.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-4
Required Performance	В
Test Voltage:	Power Line: 1 kV
	Signal/Control Line: 0.5 KV
Polarity:	Positive & Negative
Impulse Frequency:	5 kHz
Impulse Wave shape :	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	Not less than 1 min.

4.5.2 TEST PROCEDURE


The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min.


The other condition as following manner:

- a. The length of power cord between the coupling device and the EUT should not exceed 1 meter.
- b. Both positive and negative polarity discharges were applied.
- c. The duration time of each test sequential was 1 minute
- d. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.5.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

4.5.4 TEST RESULTS

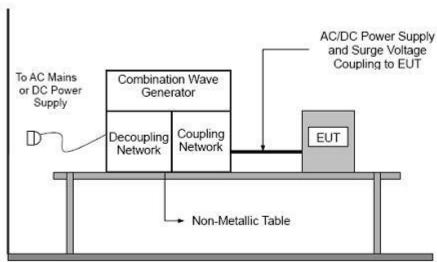
EUT:	Anti-loss key finder	Model Name :	MO8648
Temperature :	25 ℃	Relative Humidity :	45%
Pressure :	1010 hPa	Test Power :	N/A
Test Mode	N/A		

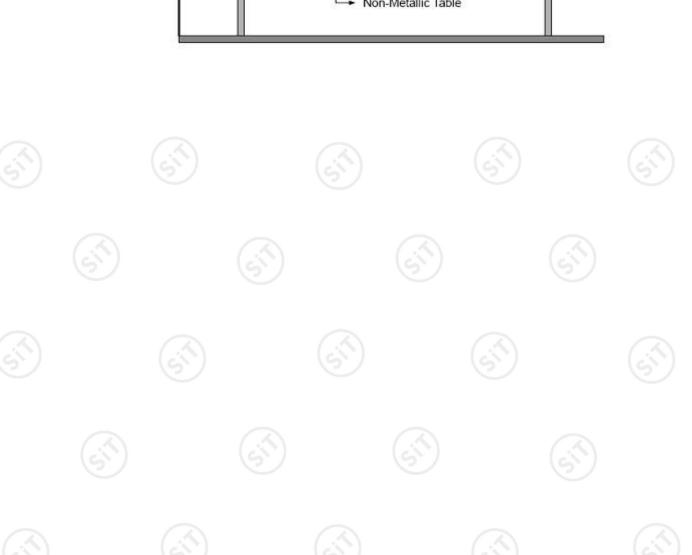
Note: The EUT is powered by DC , so this item is not applicable.

4.6 SURGE TESTING

4.6.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-5
Required Performance	В
Wave-Shape:	Combination Wave
	1.2/50 us Open Circuit Voltage
	8 /20 us Short Circuit Current
Test Voltage:	Power Line: 0.5 kV, 1 kV, 2kV
Surge Input/Output:	L-N, L-PE, N-PE
Generator Source:	2 ohm between networks
Impedance:	12 ohm between network and ground
Polarity:	Positive/Negative
Phase Angle:	0 /90/180/270
Pulse Repetition Rate:	1 time / min. (maximum)
Number of Tests:	5 positive and 5 negative at selected points


4.6.2 TEST PROCEDURE


- a. For EUT power supply:
 - The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).
- b. For test applied to unshielded unsymmetrically operated interconnection lines of EUT: The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).
- c. For test applied to unshielded symmetrically operated interconnection /telecommunication lines of EUT:
 - The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).
- d. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.6.3 TEST SETUP

4.6.4 TEST RESULTS

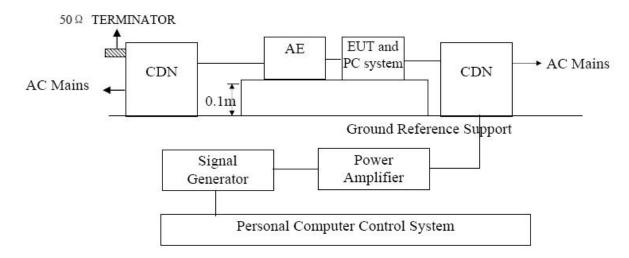
EUT :	Anti-loss key finder	Model Name :	MO8648
Temperature :	25 ℃	Relative Humidity:	45%
Pressure :	1010 hPa	Test Power :	N/A
Test Mode	N/A		

Note: The EUT is powered by $\ensuremath{\mathsf{DC}}$, so this item is not applicable.

4.7 INJECTION CURRENT TESTING

4.7.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-6
Required Performance	A
Frequency Range:	0.15 MHz - 80 MHz
Field Strength:	3 Vr.m.s.
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Dwell Time:	at least 3 seconds


4.7.2 TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min.

The other condition as following manner:

- a. The field strength level was 3V.
- b. The frequency range is swept from 150 KHz to 80 MHz, with the signal 80%amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.7.3 TEST SETUP

For the actual test configuration, please refer to the related Item –EUT Test Photos.

NOTE:

FLOOR-STANDING EQUIPMENT

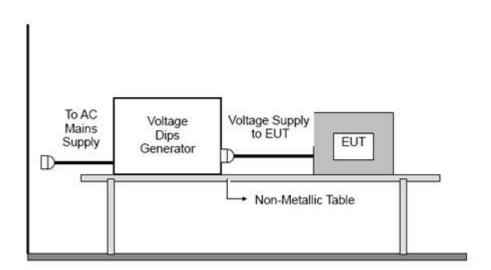
The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

4.7.4 TEST RESULTS

EUT:	Anti-loss key finder	Model Name :	MO8648
Temperature :	25 ℃	Relative Humidity :	45%
Pressure :	1010 hPa	Test Power :	N/A
Test Mode	Mode 1		

Note: The EUT is powered by $\ensuremath{\mathsf{DC}}$, so this item is not applicable.

4.8 VOLTAGE INTERRUPTION/DIPS TESTING


4.8.1 TEST SPECIFICATION

Basic Standard:	IEC/EN IEC 61000-4-11
Required Performance	100% reduction, 0.5 Cycle 100% reduction, 1.0 Cycle
	30% reduction, 25 Cycles
Voltage Interruptions:	100% reduction, 250 Cycles
Test Duration Time:	Minimum three test events in sequence
Interval between Event:	Minimum ten seconds
Phase Angle:	0°/45°/90°/135°/180°/225°/270°/315°/360°
Test Cycle:	3 times

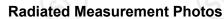
4.8.2 TEST PROCEDURE

The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

4.8.3 TEST SETUP

For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.8.4 TEST RESULTS

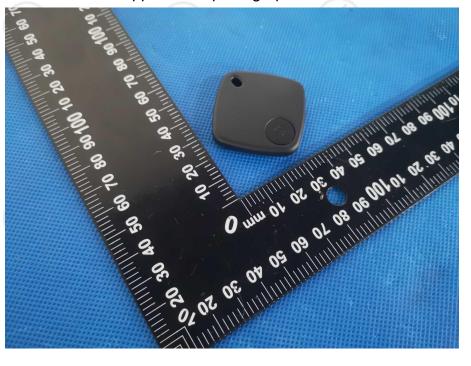

EUT :	Anti-loss key finder	Model Name :	MO8648
Temperature :	25 ℃	Relative Humidity:	45%
Pressure :	1010 hPa	Test Power :	N/A
Test Mode	N/A		

Note: The EUT is powered by $\ensuremath{\mathsf{DC}}$, so this item is not applicable.

5. EUT TEST PHOTO

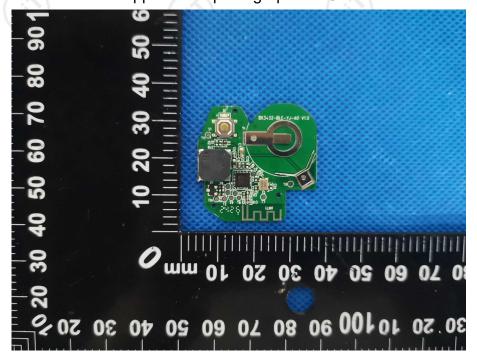
6. PHOTOGRAPHS OF EUT

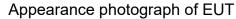
Appearance photograph of EUT

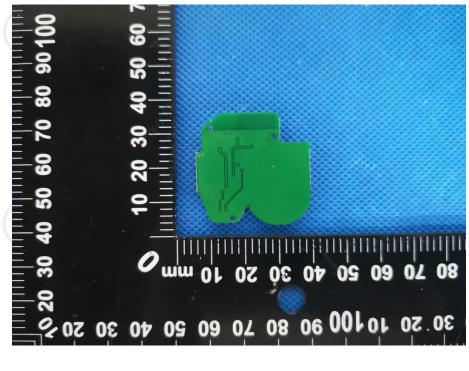


Appearance photograph of EUT

Appearance photograph of EUT






Appearance photograph of EUT

.....End of Report.....

CE EMC REPORT

Prepared For:	Mid Ocean Brands B.V. Add: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong	
Product Name:	Anti-loss key finder	
Trade Mark:	N/A	
Model:	MO8648	
Prepared By:	Shenzhen SIT Testing Technology Co., Ltd. Add: Room 401, Building A2, The 2nd Industrial Zone of Zhu'ao, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China	
Test Date:	October 16, 2024 to October 22, 2024	
Date of Report:	October 22, 2024	
Report No.:	SIT241015160202ER	

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen SIT Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen SIT Testing Technology Co., Ltd, personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1	TEST CERTIFICATION	3
2		
3	EUT DESCRIPTION	5
	TEST METHODOLOGY	
-	4.1. DECISION OF FINAL TEST MODE	
	4.2. EUT SYSTEM OPERATION	5
5	SETUP OF EQUIPMENT UNDER TEST	
	5.1. DESCRIPTION OF SUPPORT UNITS	6
	5.2. CONFIGURATION OF SYSTEM UNDER TEST	6
6	FACILITIES AND ACCREDITATIONS	7
	6.1. FACILITIES	
	6.2. ACCREDITATIONS	7
	6.3. MEASUREMENT UNCERTAINTY	
7	EMISSION TEST	_
	7.1. CONDUCTED EMISSION MEASUREMENT	8
	7.2. RADIATED EMISSION MEASUREMENT	
8	IMMUNITY TEST	
	8.1. GENERAL DESCRIPTION	
	8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION	
	8.3. ELECTROSTATIC DISCHARGE (ESD)	18
	8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)	
	8.5. ELECTRICAL FAST TRANSIENT (EFT)	25
	8.6. SURGE IMMUNITY TEST	28
	8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)	
	8.8. POWER FREQUENCY MAGNETIC FIELD	35
_	8.9. VOLTAGE DIP & VOLTAGE INTERRUPTIONS	
	PHOTOGRAPHS OF THE TEST CONFIGURATION	
10	0 PHOTOGRAPHS OF EUT	41

1 TEST CERTIFICATION

Product: Anti-loss key finder

Model: MO8648

Applicant: Mid Ocean Brands B.V.

Add: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong

Report No.: SIT241015160202ER

Kong

Manufacturer: 114628

Trade Mark: N/A

Tested: October 16, 2024 to October 22, 2024

Test Voltage: Power supplied by 1xCR2032 3V battery

Applicable EN 55032:2015+A1:2020+A11:2020 **Standards:** EN IEC 61000-3-2:2019+A1:2021

EN 61000-3-3:2013+A2:2021 EN 55035:2017+A11:2020

The above equipment has been tested by Shenzhen SIT Testing Technology Co., Ltd., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Prepared by:

Assistant

Reviewer:

Supervisor

Approved & Authorized Signer:

2 TEST RESULT SUMMARY

EMISSION				
Standard	Item	Result	Remarks	
EN 55032:2015+A1:2020+A11:2020	Conducted (Main Port)	N/A	N/A	
EN 55052.2015+A1.2020+A11.2020	Radiated	PASS	Meet Class B limit	
EN IEC 61000-3-2:2019+A1:2021	Harmonic current emissions	N/A	N/A	
EN 61000-3-3:2013+A2:2021	Voltage fluctuations & flicker	N/A	N/A	

IMMUNITY [EN55035:2017+A11:2020]				
Standard	Item	Result	Remarks	
EN 61000-4-2:2009	ESD	PASS	Meets the requirements of Performance Criterion B	
EN IEC 61000-4-3:2020	RS	PASS	Meets the requirements of Performance Criterion A	
EN 61000-4-4:2012	EFT	N/A	Meets the requirements of Performance Criterion B	
EN 61000-4-5:2014+A1:2017	Surge	N/A	Meets the requirements of Performance Criterion B	
EN 61000-4-6:2014+AC:2015	cs	N/A	Meets the requirements of Performance Criterion A	
EN 61000-4-8: 2010	PFMF	N/A	Meets the requirements of Performance Criterion A	
EN IEC 61000-4-11:2020	Voltage dips & voltage variations	N/A	Meets the requirements of Voltage dips: 1) >95% reduction performance Criterion B 2) 30% reduction performance Criterion C Voltage variations: 1)>95% reduction performance Criterion C	

Note: 1. The test result judgment is decided by the limit of test standard

2. The information of measurement uncertainty is available upon the customer's request.

3 EUT DESCRIPTION

Product	Anti-loss key finder
Model	MO8648
Trade Mark	N/A
Applicant	Mid Ocean Brands B.V.
Housing material	Plastic
EUT Type	☐ Engineering Sample.☐ Product Sample,☐ Mass Product Sample.
Serial Number	N/A
Power Rating	Power supplied by 1xCR2032 3V battery

Report No.: SIT241015160202ER

4 TEST METHODOLOGY

4.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the thereinafter additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The following test mode(s) were scanned during the preliminary test:

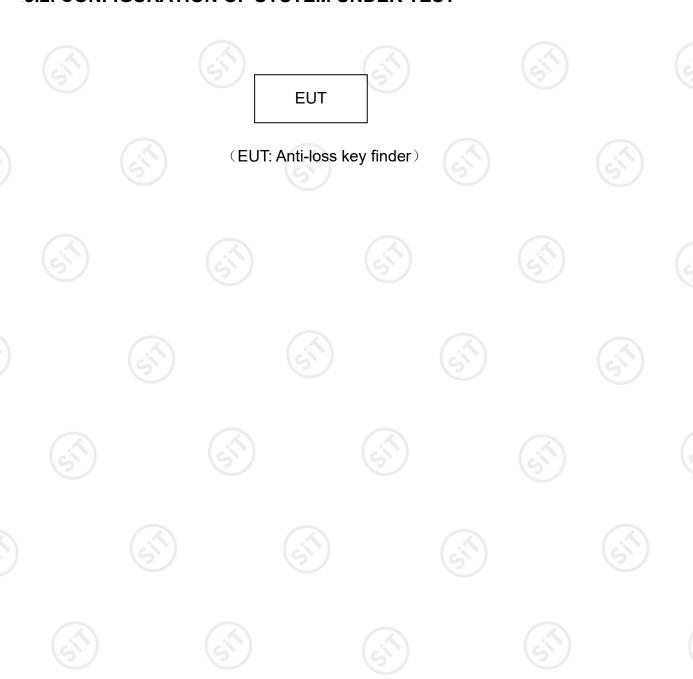
Pre-Test Mode					
Mode Emission	Radiated Emission	Mode1 : Normal working			

After the preliminary scan, the following test mode was found to produce the highest emission level.

The Worst Test Mode				
Mode Emission	Radiated Emission	Mode1 : Normal working		

4.2. EUT SYSTEM OPERATION

- 1. Set up EUT with the support equipments.
- 2. Make sure the EUT work normally during the test.


5 SETUP OF EQUIPMENT UNDER TEST 5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Note:

- 1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5.2. CONFIGURATION OF SYSTEM UNDER TEST

6 FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at SIT LAB.

Report No.: SIT241015160202ER

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Copies of granted accreditation certificates are available for downloading from our web site, www.sit-cert.com

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement		Frequency	Uncertainty
Conducted emissions	9	kHz~30MHz	+/- 3.59dB
	Horizontal	30MHz ~ 200MHz	+/- 4.77dB
Radiated emissions	ПОПДОПІАІ	200MHz ~1000MHz	+/- 4.93dB
Radiated emissions	Vertical	30MHz ~ 200MHz	+/- 5.04dB
)	vertical	200MHz ~1000MHz	+/- 4.93dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

7 EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT

7.1.1. LIMITS

EDECUENCY (MU-)	Class B (dBuV)					
FREQUENCY (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

7.1.2. TEST INSTRUMENTS

Conducted Emission Shielding Room Test Site (743)									
Name of Equipment Manufacturer Model Serial Number Calibration Du									
EMI Test Receiver	R&S	ESCI	100005	12/14/2024					
LISN	AFJ	LS16	16010222119	12/19/2024					
LISN(EUT)	Mestec	AN3016	04/10040	12/18/2024					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

2. N.C.R = No Calibration Request.

7.1.3. TEST PROCEDURES

Procedure of Preliminary Test

The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN55032 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

Report No.: SIT241015160202ER

All I/O cables were positioned to simulate typical actual usage as per EN55032.

The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

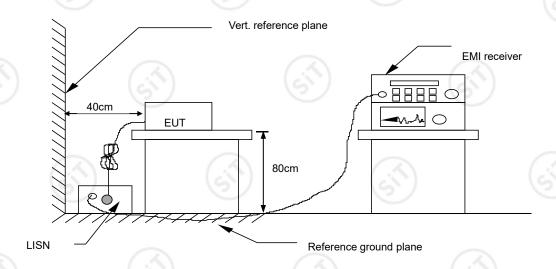
The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in Item 3.1 were scanned during the preliminary test.

After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.

The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.


Procedure of Final Test

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

7.1.4. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.1.5. TEST RESULTS

Model No.	MO8648	Pressure	1010hPa
Environmental Conditions	26°C, 60% RH	Test Mode	N/A
Detector Function	Peak / Quasi-peak/AV	Test Result	N/A
Test By	DebeYu		

NOTE:

L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

"---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.

Freq. = Emission frequency in MHz

Reading level (dBuV) = Receiver reading

Corr. Factor (dB) = Attenuator factor + Cable loss

Level (dBuV) = Reading level (dBuV) + Corr. Factor (dB)

Limit (dBuV) = Limit stated in standard

Margin (dB) = Level (dBuV) – Limits (dBuV)

Q.P.=Quasi-Peak

7.2. RADIATED EMISSION MEASUREMENT

7.2.1. LIMITS

FREQUENCY (MHz)	dBuV/m (At 3m)
	Limit
30 ~ 230	40
230 ~ 1000	47

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

7.2.2. TEST INSTRUMENTS

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Manufacturer Model Serial Number		Calibration Due			
EMI Test Receiver	R&S	ESCI	100005	12/14/2024			
Spectrum Analyzer	R&S	FSU	100114	12/17/2024			
Pre Amplifier	H.P.	HP8447E	2945A02715	12/14/2024			
Bilog Antenna	SUNOL Sciences	JB3	A021907	12/17/2024			
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	12/19/2024			
System-Controller	ccs	N/A	N/A	N.C.R			
Turn Table	ccs	N/A	N/A	N.C.R			
Antenna Tower	ccs	N/A	N/A	N.C.R			

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

2. N.C.R = No Calibration Request.

7.2.3. TEST PROCEDURE

Procedure of Preliminary Test

The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

Report No.: SIT241015160202ER

Support equipment, if needed, was placed as per EN55032.

All I/O cables were positioned to simulate typical usage as per EN55032.

Mains cables, telephone lines or other connections to auxiliary equipment located outside the test are shall drape to the floor, be fitted with ferrite clamps or ferrite tubes placed on the floor at the point where the cable reaches the floor and then routed to the place where they leave the turntable. No extension cords shall be used to mains receptacle.

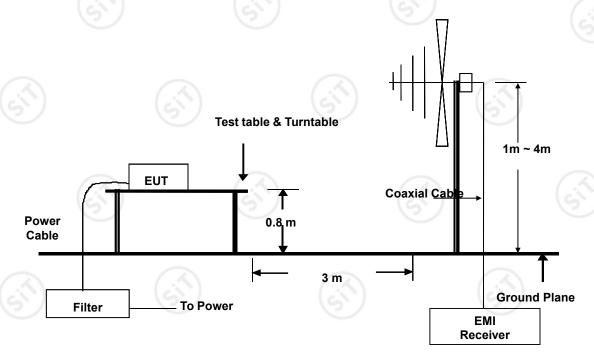
The antenna was placed at 3 meter away from the EUT as stated in EN 55032. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.

The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

The test mode(s) described in Item 3.1 were scanned during the preliminary test:

After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level. The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test


EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.

The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.

The test data of the worst-case condition(s) was recorded.

7.2.4. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration

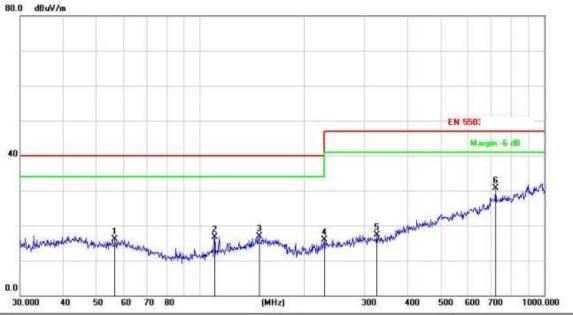
7.2.5 TEST RESULTS

Model No.	MO8648	Test Mode	Normal working
Environmental Conditions	26°C, 60% RH	Pressure	1010hPa
Antenna Pole	Vertical / Horizontal	Antenna Distance	3m
Detector Function	Peak / Quasi-peak	Tested by	DebeYu

Freq. = Emission frequency in MHz

Reading level (dBuV) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss


Measurement (dBuV) = Reading level (dBuV) + Corr. Factor (dB)

Limit (dBuV) = Limit stated in standard

Margin (dB) = Measurement (dBuV) – Limits (dBuV)

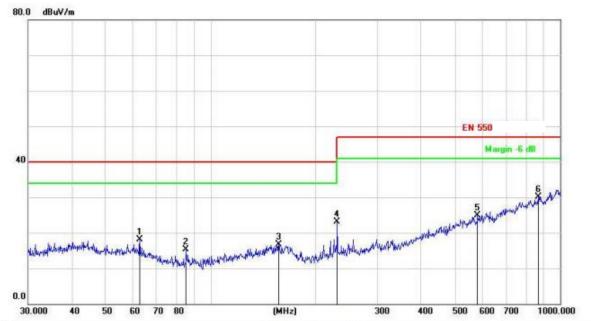
Radiated Emission Measurement

Site LAB

Limit: EN 55032 CLASS B EUT: Anti-loss key finder

M/N: MO8648

Mode: Note: Polarization: Horizontal Temperature:


Power: Humidity:

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		56.5929	27.63	-11.59	16.04	40.00	-23.96	peak	Page 15		
2		110.1816	30.69	-14.06	16.63	40.00	-23.37	peak			
3		148.4410	27.73	-10.76	16.97	40.00	-23.03	peak			
4		229.2931	28.53	-12.53	16.00	40.00	-24.00	peak			
5		326.7395	27.81	-10.45	17.36	47.00	-29.64	peak			
6	*	721.7259	32.04	-1.25	30.79	47.00	-16.21	peak			

Radiated Emission Measurement

Site LAB

Limit: EN 55032 CLASS B

EUT: Anti-loss key finder

M/N: MO8648

Mode: Note:

Polarization:	Vertical	Temperature:
Power		Humidity

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		62.6507	30.16	-12.06	18.10	40.00	-21.90	peak			
2		84.9995	30.84	-15.45	15.39	40.00	-24.61	peak			
3		156.4578	27.38	-10.59	16.79	40.00	-23.21	peak			
4		230.0985	35.57	-12.47	23.10	47.00	-23.90	peak			
5		580.7026	28.64	-3.81	24.83	47.00	-22.17	peak			
6	*	866.0879	29.00	1.08	30.08	47.00	-16.92	peak			

8 IMMUNITY TEST

8.1. GENERAL DESCRIPTION

Product		EN55035:2017+A11:2020
Standard	Test Type	Minimum Requirement
	EN 61000-4-2	Electrostatic Discharge – ESD: 8kV air discharge, 4kV Contact discharge, Performance Criterion B
	EN IEC 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test – RS: 80 ~1000 MHz, 3V/m, 80% AM(1kHz), Performance Criterion A
	EN 61000-4-4	Electrical Fast Transient/Burst - EFT, Power line: 1kV, Signal line: 0.5kV, Performance Criterion B
Basic Standard, Specification, and Performance	EN 61000-4-5	Surge Immunity Test: 1.2/50 us Open Circuit Voltage, 8 /20 us Short Circuit Current, Power Port ~ Line to line: 1kV, Line to ground: 2kV Signal Port ~ Lines to ground : 1kV Performance Criterion B
Criterion required	EN 61000-4-6	Conducted Radio Frequency Disturbances Test –CS: 0.15 ~ 80 MHz, 3Vrms, 80% AM, 1kHz, Performance Criterion A
	EN 61000-4-8	Power frequency magnetic field immunity test 50 Hz, 1A/m Performance Criterion A
	EN IEC 61000-4-11	Voltage Dips: i) >95% reduction for 0.5 period, Performance Criterion B ii) 30% reduction for 25 period, Performance Criterion C
		Voltage Interruptions: >95% reduction for 250 period Performance Criterion C
128		

8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION

Criteria A:	The apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria B:	After test, the apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance.
	During the test, degradation of performance is however allowed. However, no change of operating state if stored data is allowed to persist after the test. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria C:	Temporary loss of function is allowed, provided the functions is self-recoverable or can be restored by the operation of controls by the user in accordance with the manufacturer instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

8.3. ELECTROSTATIC DISCHARGE (ESD)

8.3.1. TEST SPECIFICATION

Basic Standard: EN 61000-4-2

Discharge Impedance: 330 ohm **Normal working Capacit** 150pF

y:

Discharge Voltage: Air Discharge: 8 kV (Direct)

Contact Discharge: 4 kV (Direct/Indirect)

Report No.: SIT241015160202ER

Polarity: Positive & Negative

Number of Discharge: Minimum 25 times at each test point

Discharge Mode: 1 time/s

Performance Criterion: B

8.3.2. TEST INSTRUMENT

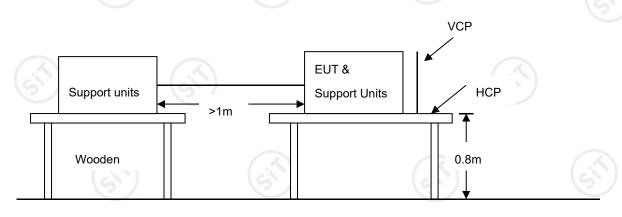
IMMUNITY SHIELDED ROOM						
Name of Equipment Manufacturer Model Serial Number Calibration D						
ESD 2000	EMC PARTNER	ESD2000	182	12/09/2024		

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

8.3.3. TEST PROCEDURE

The discharges shall be applied in two ways:

a) Contact discharges to the conductive surfaces and coupling planes: The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.


Report No.: SIT241015160202ER

b) Air discharges at slots and apertures and insulating surfaces: On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with IEC 61000-4-2:

- a) The EUT was located 0.1 m minimum from all side of the **HCP** (dimensions 1.6m x 0.8m).
- b) The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- c) The time interval between two successive single discharges was at least 1 second.
- d) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- e) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- f) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharge.
- g) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

8.3.4. TEST SETUP

Ground Reference

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLE-TOP EQUIPMENT

The **GRP** consisted of a wooden table 0.8 meters high standing on the **G**round **R**eference **P**lane. The **GRP** consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A **H**orizontal **C**oupling **P**lane (1.6m x 0.8m) was placed on the table and attached to the **GRP** by means of a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of EN 61000-4-2, and its cables were placed on the **HCP** and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

8.3.5. TEST RESULTS

Temperature:	25°C	Humidity	55% RH
Pressure	996mbar	Test result	Pass
Test mode	Normal working	Test By	DebeYu

Air Discharge							
		Test Levels Results					
Test locations		± 8 kV	Pass	Fail	Performance Criterion	Observa	tion
Button and Top	2Points		\boxtimes		В	Note 🗌 1	⊠ 2

Contact Discharge							
	Test Levels			Results			
Test Points		± 4 kV	Pass	Fail	Performance Criterion	Observation	on
HCP	2Points	\boxtimes			В	Note 1	⊠2
VCP	2Points	\boxtimes			В	Note 1	⊠2

NOTE: 1. There was no change compared with initial operation during the test.2. The loss of function of the EUT during the test and it was recovered by itself operation after the test.

8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)

Report No.: SIT241015160202ER

Basic Standard: EN IEC 61000-4-3

Frequency Range: 80 MHz ~1000 MHz,

Field Strength: 3 V/m

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

Polarity of Antenna: Horizontal and Vertical

Test Distance: 3 m

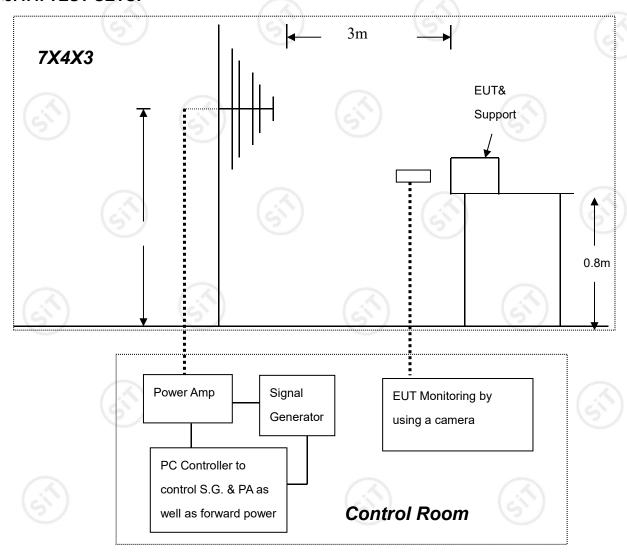
Antenna Height: 1.5m

Performance Criterion: A

8.4.2. TEST INSTRUMENT

743 RS Chamber						
Name of Equipment	Manufacturer	anufacturer Model Serial Number				
Signal Generator	Maconi	2022D	119246/003	12/19/2024		
Power Amplifier	M2S	A00181-1000	9801-112	12/19/2024		
Power Amplifier	M2S	AC8113/ 800-250A	9801-179	12/19/2024		
Power Antenna	SCHAFFNER	CBL6140A	1204	12/19/2024		

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


2. N.C.R.= No Calibration required

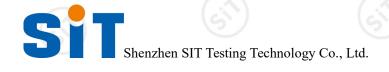
8.4.3. TEST PROCEDURE

The test procedure was in accordance with EN IEC 61000-4-3.

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1 kHz sine-wave. The rate of sweep did not exceed 1.5 x 10 ⁻³ decade/s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

8.4.4. TEST SETUP

For the actual test configuration, please refer to the related item.


NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of EN IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

8.4.5. TEST RESULTS

Temperature:	25°C	Humidity	55% RH
Pressure	996mbar	Test result	Pass
Test mode	Normal working	Test By	DebeYu

Frequency (MHz)	Polarity	Position	Field Strength (V/m)	Observation	Result
80 ~ 1000	V&H	Front	3	Note	PASS
80 ~ 1000	V&H	Rear	3	Note	PASS
80 ~ 1000	V&H	Left	3	Note	PASS
80 ~ 1000	V&H	Right	3	Note	PASS

NOTE: 1. There was no change compared with the initial operation during the test.

8.5. ELECTRICAL FAST TRANSIENT (EFT)

8.5.1. TEST SPECIFICATION

Basic Standard: EN 61000-4-4

Test Voltage: Power Line: 1 kV

Signal/Control Line: 0.5 kV

Report No.: SIT241015160202ER

Polarity: Positive & Negative

Impulse Frequency: 5 kHz
Impulse Wave-shape: 5/50 ns
Burst Duration: 15 ms

Burst Period: 300 ms

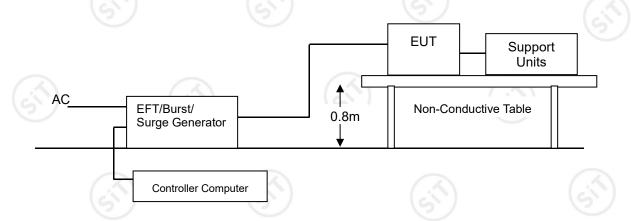
Test Duration: Not less than 1 min.

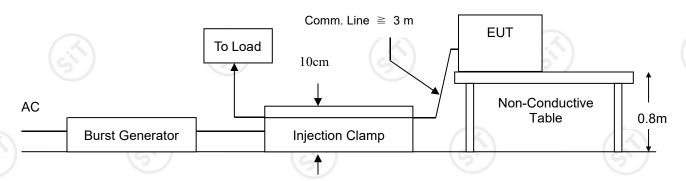
Performance criterion: B

8.5.2. TEST INSTRUMENT

Immunity Shield Room						
Name of Equipment Manufacturer Model Serial Number Calibratio						
EMC PARTNER TRANSIENT 2000	EMC PARTNER	TRA2000	881	12/09/2024		

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


2. N.C.R.= No Calibration required


8.5.3. TEST PROCEDURE

- a) Both positive and negative polarity discharges were applied.
- b) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- c) The duration time of each test sequential was 1 minute.
- d) The transient/burst waveform was in accordance with EN 61000-4-4, 5/50ns.

8.5.4. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

8.5.5. TEST RESULTS

Temperature:	25°C	Humidity	55% RH
Pressure	996mbar	Test result	N/A
Test mode	Normal working	Test By	DebeYu

			/ . ^ / /		
Test Point	Polarity	Test Level (kV)	Performance Criterion	Observation	Result
L 1	+/-	1	В	Note ☐ 1 ☐ 2	N/A
L 2	+/-		В	Note ☐ 1 ☐ 2	N/A
L 1–L 2	+/-	(51)	В	Note 1 2	N/A
PE	+/-	1	В	Note 1 2	N/A
L – PE	+/-	1	В	Note 1 2	N/A
N – PE	+/-	1	В	Note 1 2	N/A
L – N – PE	+/-	1	В	Note 1 2	N/A
RJ45 UTP cable		-		Note 🗆 1 🗆 2	N/A

NOTE: 1. There was no change compared with initial operation during the test.2. The loss of function of the EUT during the test and it was recovered by itself operation after the test.

8.6. SURGE IMMUNITY TEST

8.6.1. TEST SPECIFICATION

Basic Standard: EN 61000-4-5

Wave-Shape: Combination Wave

1.2/50 us Open Circuit Voltage 8/20 us Short Circuit Current

Test Voltage: Power line ~ line to line: 1 kV;

line to ground: 2kV

Telecommunication line: 1 kV;

Surge Input/Output: Power Line: L1-L2 / L1-PE / L2-PE

Telecommunication line: T-Ground / R-Ground

Report No.: SIT241015160202ER

Generator Source Impedance: 2 ohm between networks

12 ohm between network and ground

Polarity: Positive/Negative

Phase Angle: 0 /90 /180 /270

Pulse Repetition Rate: 1 time / min. (maximum)

Number of Tests: 5 positive and 5 negative at selected points

Performance Criterion: B

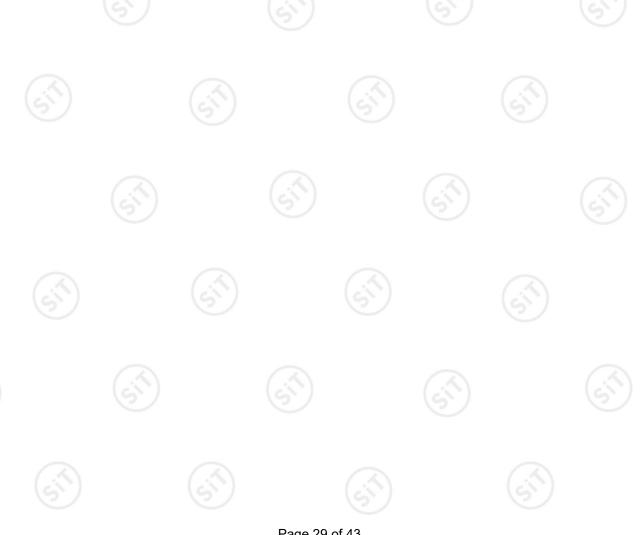
8.6.2. TEST INSTRUMENT

Immunity Shield Room					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMC PARTNER TRANSIENT 2000	EMC PARTNER	TRA2000	881	12/09/2024	

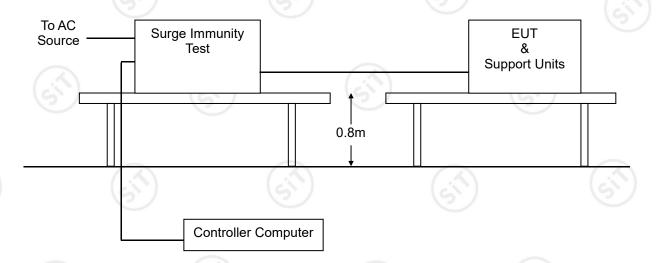
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

2. N.C.R.= No Calibration required

8.6.3. TEST PROCEDURE


a) For EUT power supply:

The surge is applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.


Report No.: SIT241015160202ER

- b) For test applied to unshielded un-symmetrically operated interconnection lines of EUT: The surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- c) For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

8.6.4. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

8.6.5. TEST RESULTS

Temperature:	25°C	Humidity	55% RH	
Pressure	996mbar	Test result	N/A	S))
Test mode	Normal working	Test By	DebeYu	

Test Point	Polarity	Test Level (kV)	Performance Criterion	Observation	Result
L 1 - L 2	+/-	1	В	Note 🗆 1 🗆 2	N/A
L1 - PE	+/-	2	В	Note ☐ 1 ☐ 2	N/A
L2 - PE	+/-	2	В	Note ☐ 1 ☐ 2	N/A
R - Ground	-	(3)	- (6)	Note ☐ 1 ☐ 2	N/A
T - Ground				Note 🗆 1 🗆 2	N/A

NOTE: 1. There was no change compared with initial operation during the test.

2. The loss of function of the EUT during the test and it was recovered by itself operation after the test.

8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)

Report No.: SIT241015160202ER

8.7.1. TEST SPECIFICATION

Basic Standard: EN 61000-4-6

Frequency Range: 0.15 MHz ~ 80 MHz

Field Strength: 3 V

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

Coupled cable: Power Mains, Shielded

Coupling device: CDN-M3/2 (3 wires)

Performance criterion: A

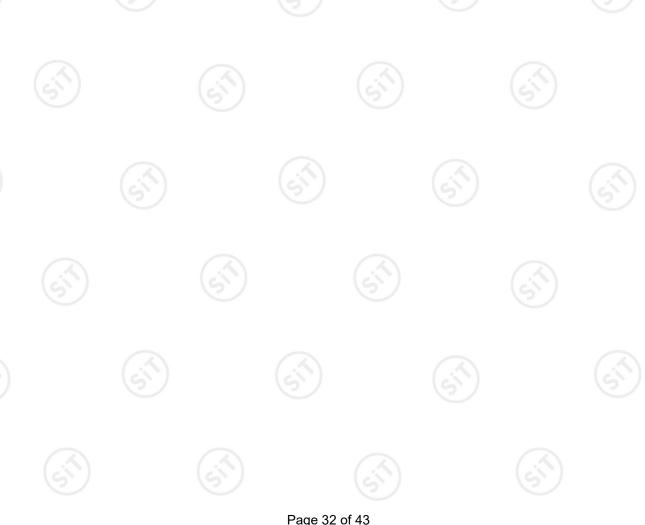
8.7.2. TEST INSTRUMENT

CS Test					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Signal Generator	Maconi	2022D	119246/003	12/19/2024	
Power Amplifier	M2S	A00181-1000	9801-112	12/19/2024	
CDN	MEB	M3-8016	003683	12/19/2024	

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

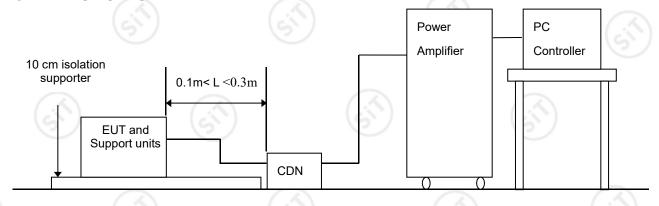
2. N.C.R.= No Calibration required

8.7.3. TEST PROCEDURE


The EUT shall be tested within its intended operating and climatic conditions.

The test shell performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

The frequency range was swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was 1.5 x 10⁻³ decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value from 150 kHz to 80 MHz.


The dwell time at each frequency was less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency(ies) and harmonics or frequencies of dominant interest, was analyzed separately.

Attempts were made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

8.7.4. TEST SETUP

Note: 1. The EUT is setup 0.1m above Ground Reference Plane

2. The CDNS and / or EM clamp used for real test depends on ports and cables configuration of EUT.

For the actual test configuration, please refer to the related item .

NOTE:

TABLE-TOP AND FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

8.7.5. TEST RESULTS

Temperature:	25°C	Humidity	55% RH
Pressure	996mbar	Test result	N/A
Test mode	Normal working	Test By	DebeYu

Frequency Band (MHz)	Field Strength (Vrms)	Injected Position	Injection Method	Performance Criterion	Observation	Result
0.15 ~ 80	3	AC Mains	CDN-M3	Α	Note	N/A
0.15 ~ 80	3	LAN(10m)		(3	Note	N/A

NOTE: 1. There was no change compared with initial operation during the test.

- 2. The loss of function of the EUT during the test and it was recovered by itself operation after the test.
- 3.N/A means to no applicable.

8.8. POWER FREQUENCY MAGNETIC FIELD

8.8.1. TEST SPECIFICATION

Basic Standard: EN 61000-4-8

Frequency Range: 50Hz
Field Strength: 1A/m

Observation Time: 5 minutes

Inductance Coil: Rectangular type, 1mMO8648m

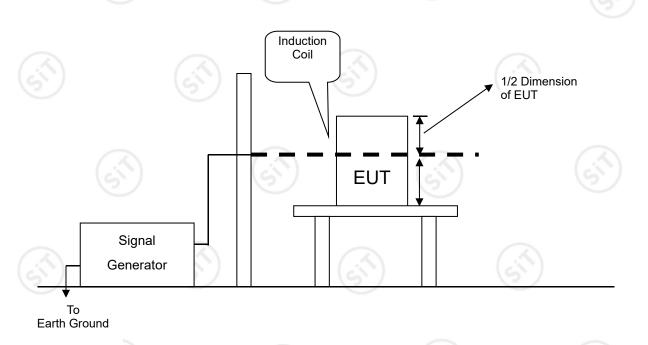
Performance criterion: A

8.8.2. TEST INSTRUMENT

Immunity Shield Room						
Name of Equipment Manufacturer Model Serial Number Calibration						
Power-frequency Magnetic field	SCHAFFNER	CCN 1000-1	72046	12/17/2024		
Induction Coil Interface	SCHAFFNER	INA2141	6003	12/17/2024		

Report No.: SIT241015160202ER

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


2. N.C.R.= No Calibration required

8.8.3. TEST PROCEDURE

- a. The equipment is configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.
- b. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- c. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- d. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

8.8.4. TEST SETUP

Report No.: SIT241015160202ER

For the actual test configuration, please refer to the related item .

NOTE:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

8.8.5. TEST RESULTS

Temperature:	25°C	Humidity	55% RH
Pressure	996mbar	Test result	N/A
Test mode	Normal working	Test By	DebeYu

DIRECTION	Field Strength (A/m)	Performance Criterion	OBSERVATION	RESULTS
X	1	A	Note □ 1 □ 2	N/A
Υ	1	А	Note □ 1 □ 2	N/A
Z (1 (3	Α (Note □ 1 □ 2	N/A

NOTE: 1. There was no change compared with initial operation during the test.2. The loss of function of the EUT during the test and it was recovered by itself operation after the test.

8.9. VOLTAGE DIP & VOLTAGE INTERRUPTIONS

8.9.1. TEST SPECIFICATION

Basic Standard: EN IEC 61000-4-11

Test duration time: Minimum three test events in sequence

Interval between event: Minimum 10 seconds

Phase Angle: 0 /45 / 90/ 135/ 180/ 225/ 270/ 315/ 360

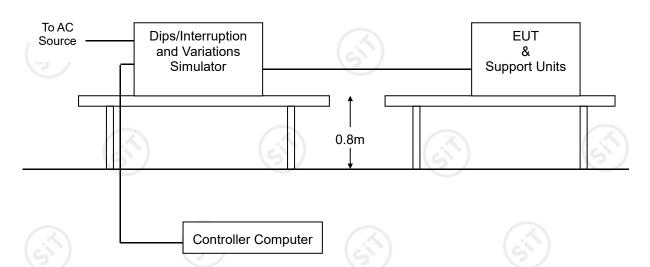
Report No.: SIT241015160202ER

Test cycle: 3 times

Performance criterion: B,C

8.9.2. TEST INSTRUMENT

Immunity shielded room					
Name of Equipment Manufacturer Model Serial Number Cali					
EMC PARTNER TRANSIENT 2000	EMC PARTNER	TRA2000	881	12/09/2024	


NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

2. N.C.R.= No Calibration required

8.9.3. TEST PROCEDURE

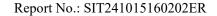
- 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- 2. Setting the parameter of tests and then perform the test software of test simulator.
- 3. Conditions changes to occur at 0 degree crossover point of the voltage waveform.
- 4. Recording the test result in test record form.

8.9.4. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

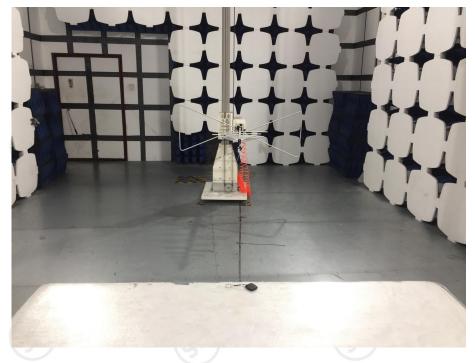
8.9.5. TEST RESULTS

Temperature:	25°C	Humidity	55% RH
Pressure	996mbar	Test result	N/A
Test mode	Normal working	Test By	DebeYu


Voltage (% Reduction)	Duration (Period)	Performanc Criterion	е	Observation	Test Result
98	0.5	□А □В	С	Note ☐ 1 ☐ 2 ☐ 3	N/A
30	25	□А □В	□С	Note ☐ 1 ☐ 2 ☐ 3	N/A
100	250	□А □В	□С	Note ☐ 1 ☐ 2 ☐ 3	N/A

NOTE: 1.There was no change compared with initial operation during and after the test.

No unintentional response was found during the test.


- 2. The function stopped during the test, but can be recoverable by itself operation after the test.
- 3. The function stopped during the test, but can be recoverable manually after the test.

9 PHOTOGRAPHS OF THE TEST CONFIGURATION

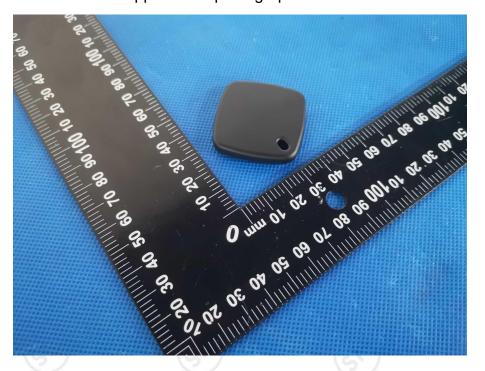
RADIATED EMISSION TEST

10 PHOTOGRAPHS OF EUT

30 40 50 60 70 80 9 90 100 10 20 30 40 50

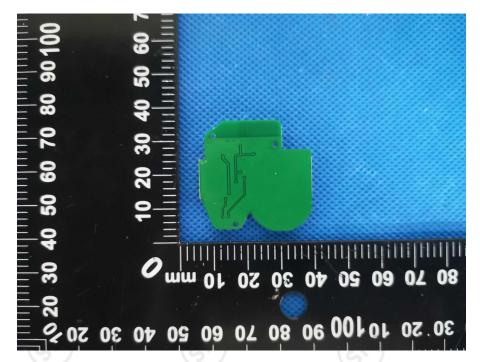
Appearance photograph of EUT

Appearance photograph of EUT



Appearance photograph of EUT

Appearance photograph of EUT



Appearance photograph of EUT

Appearance photograph of EUT

**** ** ** ** END OF REPORT* ** ** ****