

TEST REPORT

Report No. : WTF25F08225725X1C

Job No. : FSW2508220985CJ

Applicant : Mid Ocean Brands B.V.

Address Unit 711-716, 7/F., Tower A, 83 King Lam Street, Cheung Sha

Wan, Kowloon, Hong Kong.

Manufacturer 114103

Sample Name : Lanyard

Sample Model : MO8595, MO9354, MO9661

Test Requested Refer to next page(s)

Test Method Refer to next page(s)

Date of Receipt Sample : 2025-08-22

Testing Period: 2025-08-22 to 2025-09-01

Test Result : Refer to next page (s)

2. This report is based on Waltek test report

WTF25F08225725C for revising, and replaced report

WTF25F08225725C.

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink Machinery City, Xingye 4 Road, Guanglong Industrial Park, Chihua Neighborhood Committee, Chencun, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Signed for and on behalf of Waltek Testing Group (Foshan) Co., Ltd.

Swing Liang

Swing Liang
Waltek Testing Group (Foshan) Co., Ltd.
http://www.waltek.com.cn

WTF25F08225725X1C

Summary

Item No.	Test Requested	Test Conclusion
WALTER W	Determination of Lead content in the submitted sample in accordance with REACH regulation Annex XVII Entries 63 (EC) No. 1907/2006 and the amendment No. 836/2012 and (EU) 2015/628	Pass
2	Determination of Cadmium content in the submitted sample in accordance with REACH regulation Annex XVII Entries 23 (EC) No. 1907/2006 and the amendment No. 552/2009, No. 494/2011, No. 835/2012 and (EU) 2016/217	Pass t
J/3	Determination of specified Phthalates content according to Annex XVII Items 51 & 52 of the REACH Regulation (EC) No. 1907/2006 & Amendment No. 552/2009 & No. 2018/2005	Pass Will
ne wa ret 4 mir	Determination of specified Polycyclic Aromatic Hydrocarbons (PAHs) content in submitted sample in accordance with Entries 50 of Annex XVII of REACH Regulation (EC) No 1907/2006 and its amendment Regulation (EU) No 1272/2013.	Pass
5 ×	Determine the specified AZO Colorants contents in the submitted sample in according to the Entries 43 in Annex XVII of the REACH Regulation (EC) No.1907/2006 and the Amendment Regulation (EC) No.552/ 2009 & No.126/ 2013 (previously restricted under Directive 2002/61/EC).	Pass
iri6 mri	To determine the nickel release content according to Annex XVII Item 27 of the REACH Regulation (EC) No. 1907/2006 & amendment No.552/2009.	Pass
7/1/16	As requested by the applicant, to test Colour Fastness to Rubbing in the submitted sample.	Pass

Sample photo:

Test Results:

1) Lead (Pb)

Test Method: With reference to IEC 62321-5:2013, the analysis was performed by ICP-OES.

- Strangt C	LOQ	Results	(mg/kg)	Limit
Test Item	(mg/kg)	No.1+No.2+No.3	No.4+No.5+No.6	(mg/kg)
Lead(Pb)	2	ND*	ND*	500
Conclusion		Pass	Pass	10,

7-17 Hamali 18	LOQ	Results (mg/kg)	Limit
Test Item	(mg/kg)	No.7+No.8+No.9	No.10	(mg/kg)
Lead(Pb)	2	ND*	ND ND	500
Conclusion		Pass	Pass	74

	LOQ	2012 20	Results (mg/kg)		Limit
Test Item	(mg/kg)	No.11+No.12 +No.13	No.14	No.15	(mg/kg)
Lead(Pb)	2	55*	52	ND	500
Conclusion	in -in	Pass	Pass	Pass	Ster Wille

Test Item	LOQ	EN LIEN N	Limit			
	(mg/kg)	No.16	No.17	No.18	No.19	(mg/kg)
Lead(Pb)	2 4	ND	ND	ND	ND	500
Conclusion	1/12 1/1	Pass	Pass	Pass	Pass	The Market

- (1) mg/kg = milligram per kilogram
- (2) ND = Not Detected (lower than LOQ)
- (3) LOQ = Limit of quantitation
- (4) Limit of Lead was quoted from REACH regulation Annex XVII Item 63 (EC) No. 1907/2006 and the amendment No. 836/2012 and (EU) 2015/628.
- (5) "*" = As per applicant's requirement, the testing was conducted based on mixed components by weight in equal ratio, results are calculated by the minimum weight of mixed components.

2) Cadmium (Cd)

Test Method: With reference to IEC 62321-5:2013, the analysis was performed by ICP-OES.

Took Hom	LOQ	Results (m	g/kg)
Test Item	(mg/kg)	No.11+No.12+No.13	No.14
Cadmium(Cd)	2	ND*	MD M
Conclusion	Will Wall O	Pass	Pass

Note:

- (1) mg/kg = milligram per kilogram
- (2) ND = Not Detected (lower than LOQ)
- (3) LOQ = Limit of quantitation
- (4) Limit of Cadmium according to REACH regulation Annex XVII Item 23 (EC) No. 1907/2006 and the amendment No. 552/2009, No. 494/2011 and No. 835/2012 and (EU) 2016/217.

Category	Limit (mg/kg)
Wet paint	100
Surface coating	1000
Plastic	100
Metal parts of jewellery and hair accessories	100

(5) "*" = As per applicant's requirement, the testing was conducted based on mixed components by weight in equal ratio, results are calculated by the minimum weight of mixed components.

3) Phthalates

Test Method: With reference to EN14372:2004, by Gas Chromatographic-Mass Spectrometric (GC-MS) analysis.

Test Items	LOQ	Resu	Limit	
THE THE THE STEEL AND	(%)	No.11+No.12 +No.13	No.14	(%)
Benzyl butyl phthalate (BBP)	0.005	ND*	ND ND	ing me me
Di (2-ethyl hexyl)- phthalate (DEHP)	0.005	0.050*	ND ND	sum of four
Dibutyl phthalate (DBP)	0.005	0.012*	ND	phthalates < 0.1
Diisobutyl phthalate (DIBP)	0.005	0.012*	ND ND	Mury Mury
Diisodecyl phthalate (DIDP)	0.01	ND*	ND ND	LITER INLIER VIN
Diisononyl phthalate (DINP)	0.01	ND*	ND	sum of three
Di-n-octyl phthalate (DNOP)	0.005	ND*	ND ND	phthalates < 0.1
Conclusion	unlite uni	Pass	Pass	0- 18t- 18th

- (1) % = percentage by weight
- (2) ND = Not Detected or lower than limit of quantitation
- (3) LOQ = Limit of quantitation
- (4) "<" = less than
- (5) The above limit was quoted according to Annex XVII Items 51 & 52 of the REACH Regulation (EC) No. 1907/2006 & Amendment No. 552/2009 & No. 2018/2005 (formerly known as Directive 2005/84/EC) for phthalate content in toys and child care articles.
- (6) "*" = As per applicant's requirement, the testing was conducted based on mixed components by weight in equal ratio, results are calculated by the minimum weight of mixed components.

4) Polycyclic Aromatic Hydrocarbons (PAHs)

Test Method: With reference to AFPS GS 2019:01 PAK method, analysis was performed by Gas Chromatographic Mass Spectrometry (GC-MS).

Test Items	Unit	Results No.11+No.12+No.13	LOQ	Limit	
Benzo(a)anthracene (BaA)	mg/kg	ND*	0.2	1.0	
Chrysene (CHR)	mg/kg	ND*	0.2	1.0	
Benzo[b]fluoranthene (BbFA)	mg/kg	ND*	0.2	1.0	
Benzo[k]fluoranthene (BkFA)	mg/kg	ND*	0.2	1.0	
Benzo(a)pyrene (BaP)	mg/kg	ND*	0.2	1.0	
Dibenzo[a,h]anthracene (DBAhA)	mg/kg	ND*	0.2	1.0	
Benzo[j]fluoranthene (BjFA)	mg/kg	ND*	0.2	1.0	
Benzo[e]Pyrene (BeP)	mg/kg	ND*	0.2	1.0	
Conclusion	2 10	Pass	TEX TEX	LIER BLIEF	

Test Items	Unit	Results	LOQ	Limit	
rest items	Onit	No.14	LOQ	- JEMIN STIE	
Benzo(a)anthracene (BaA)	mg/kg	ND	0.2	1.0	
Chrysene (CHR)	mg/kg	ND ND	0.2	1.0	
Benzo[b]fluoranthene (BbFA)	mg/kg	ND	0.2	1.0	
Benzo[k]fluoranthene (BkFA)	mg/kg	ND ND	0.2	1.0	
Benzo(a)pyrene (BaP)	mg/kg	ND	0.2	1.0	
Dibenzo[a,h]anthracene (DBAhA)	mg/kg	ND	0.2	1.0	
Benzo[j]fluoranthene (BjFA)	mg/kg	ND	0.2	1.0	
Benzo[e]Pyrene (BeP)	mg/kg	ND	0.2	1.0	
Conclusion	EK MITTER W	Pass	71 74	at the	

- (1) ND = Not Detected or lower than limit of quantitation
- (2) mg/kg=milligram per kilogram=ppm
- (3) LOQ = Limit of quantitation
- (4) As per Entries 50 of Annex XVII of REACH Regulation (EC) No 1907/2006 and its amendment Regulation (EU) No 1272/2013, Articles shall not be placed on the market for supply to the general public, if any of their rubber or plastic components that come into direct as well as prolonged or short-term repetitive contact with the human skin or the oral cavity, under normal or reasonably foreseeable conditions of use, contain more than 1 mg/kg (0,0001 % by weight of this component) of any of the listed PAHs.
- (5) As per Entries 50 of Annex XVII of REACH Regulation (EC) No 1907/2006 and its amendment Regulation (EU) No 1272/2013, Toys, including activity toys, and childcare articles, shall not be placed on the market, if any of their rubber or plastic components that come into direct as well as prolonged or short-term repetitive contact with the human skin or the oral cavity, under normal or reasonably foreseeable conditions of use, contain more than 0,5 mg/kg (0,00005 % by weight of this component) of any of the listed PAHs.
- (6) "*" = As per applicant's requirement, the testing was conducted based on mixed components by weight in equal ratio, results are calculated by the minimum weight of mixed components.

5) AZO

Test Method: With reference to BS EN ISO 14362-1: 2017 and BS EN ISO 14362-3: 2017, analysis was performed by Gas Chromatographic Mass Spectrometry (GC-MS)

2	THE THE LITER MATE MAIN WAY	WELL	I imais	Result (mg/kg)		
No.	Amines Substances	CAS No.	Limit (mg/kg)	No.1+No.2 +No.3 ND* ND* ND* ND* ND* ND* ND* ND	No.4+No.5 +No.6	
1	4-Aminobiphenyl	92-67-1	30	ND*	ND*	
2	Benzidine	92-87-5	30	ND*	ND*	
3	4-chloro-o-Toluidine	95-69-2	30	ND*	ND*	
4	2-Naphthylamine	91-59-8	30	ND*	ND*	
5	o-Aminoazotoluene	97-56-3	30	ND*	ND*	
6	2-Amino-4-nitrotoluene	99-55-8	30	ND*	ND*	
7	p-Chloroaniline	106-47-8	30	ND*	ND*	
8	2,4-diaminoanisol	615-05-4	30	ND*	ND*	
9	4,4'-Diaminodiphenylmethane	101-77-9	30	ND*	ND*	
10	3,3'-Dichlorobenzidine	91-94-1	30	ND*	ND*	
11	3,3'-Dimethoxybenzidine	119-90-4	30	ND*	ND*	
12	3,3'-Dimethylbenzidine	119-93-7	30	ND*	ND*	
13	3,3'-Dimethyl-4,4'-diaminodiphenylmethane	838-88-0	30	ND*	ND*	
14	p-cresinin	120-71-8	30	ND*	ND*	
15	4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	30	ND*	ND*	
16	4,4'-Oxydianiline	101-80-4	30	ND*	ND*	
17	4,4'-Thiodianiline	139-65-1	30	ND*	ND*	
18	o-Toluidine	95-53-4	30	ND*	ND*	
19	2,4-Toluylendiamine	95-80-7	30	ND*	ND*	
20	2,4,5 – Trimethylaniline	137-17-7	30	ND*	ND*	
21	o-anisidine	90-04-0	30	ND*	ND*	
22	4-aminoazobenzene	60-09-3	30	ND*	ND*	
23	2,4-Xylidin	95-68-1	30	ND*	ND*	
24	2,6-Xylidin	87-62-7	30	ND*	ND*	
20,	Conclusion	We - Will	12 Jun	Pass	Pass	

et.	Amino Cultatanos	CAS No.	Limit (mg/kg)	Result (mg/kg)
No.	Amines Substances			No.7+No.8+No.9
1	4-Aminobiphenyl	92-67-1	30	ND*
2	Benzidine	92-87-5	30	ND*
3	4-chloro-o-Toluidine	95-69-2	30	ND*
4	2-Naphthylamine	91-59-8	30	ND*
5	o-Aminoazotoluene	97-56-3	30	ND*
6	2-Amino-4-nitrotoluene	99-55-8	30	ND*
7	p-Chloroaniline	106-47-8	30	ND*
8	2,4-diaminoanisol	615-05-4	30	ND*
9	4,4'-Diaminodiphenylmethane	101-77-9	30	ND*
10	3,3'-Dichlorobenzidine	91-94-1	30	ND*
11	3,3'-Dimethoxybenzidine	119-90-4	30	ND*
12	3,3'-Dimethylbenzidine	119-93-7	30	ND*
13	3,3'-Dimethyl-4,4'-diaminodiphenylmethane	838-88-0	30	ND*
14	p-cresinin	120-71-8	30	ND*
15	4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	30	ND*
16	4,4'-Oxydianiline	101-80-4	30	ND*
17	4,4'-Thiodianiline	139-65-1	30	ND*
18	o-Toluidine	95-53-4	30	ND*
19	2,4-Toluylendiamine	95-80-7	30	ND*
20	2,4,5 – Trimethylaniline	137-17-7	30	ND*
21	o-anisidine	90-04-0	30	ND*
22	4-aminoazobenzene	60-09-3	30	ND*
23	2,4-Xylidin	95-68-1	30	ND*
24	2,6-Xylidin	87-62-7	30	ND*
N.	Conclusion	6	18 - S	Pass

Note:

- ND = Not Detected or lower than limit of quantitation
- mg/kg=Milligram per kilogram
- Limit of quantitation (mg/kg): Each 5mg/kg
- The CAS-numbers 97-56-3 and 99-55-8 are further reduced to CAS-numbers 95-53-4 and 95-80-7.
- AZO colorants that are able to form 4-aminoazobenzene, generate under the condition of this method aniline and 1,4-phenylenediamine. The presence of these colorants cannot be reliably ascertained without additional information, e.g. the chemical structure of the colorant used.
- "*" = As per applicant's requirement, the testing was conducted based on mixed components by weight in equal ratio, results are calculated by the minimum weight of mixed components.

6) Nickel release

Test Method: With reference to EN1811:2023, Nickel content was determined by Inductively Coupled Argon Plasma Spectrometry.

Item No.	Sample Area (cm²)	Toet	Nickel release (μg/cm²/week)				Conclusion
			Trial 1	Trial 2	Trial 3	Average	
No.20	23.02	20	ND	SEL ND	ND	ND	Pass

- (1) $\mu g/cm^2/week = microgram per square centimetre per week$
- (2) Limit of quantitation = 0.05 μg/cm²/week
- (3) ND = Not detected or less than the value of limit of quantitation
- (4) Pass =Test results comply with the limit
- (5) Interpretation of test results:

of the sight sight and the annual substitution of the substitution	Nickel Release(μg/cm²/week)			
Type of sample	Pass	Fail		
Other components in direct and prolonged contact with the skin	<0.88	≥0.88		
Post assemblies and body piercings (Post assemblies which are inserted into pierced parts of the human body)	<0.35	white		

7) Colour Fastness to Rubbing

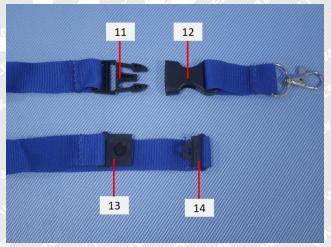
Colour Fastness to Rubbing						
(ISO 105-X1	2: 2016; Size of rubbin	g finger: 16mr	m diameter.)	CLIFE IN	ile aris	any any
et de	t the the of	No.1	No.2	No.3	No.4	Client's Limit
Length	Dry staining	4-5	4-5	4-5	4-5	2-3
	Wet staining	4-5	4-5	4-5	4-5	2-3
The will wi	Dry staining	20 0.		JEH JEH	. LITE . N	2-3
Width Wet staining		STEEL WITE	10 21/10	- 7/1	20 - 20	2-3
Conclusion	ter me me	Pass	Pass	Pass	Pass	CITY -UNIT

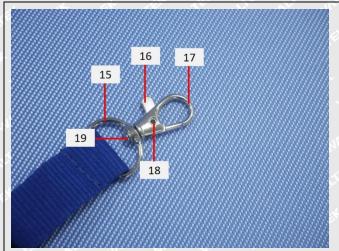
Colour Fastness to Rubbing							
(ISO 105-X1	2: 2016; Size of rubbin	ng finger: 16	mm diame	ter.)	+ 2+	TEX	LIER CLIEF MY
2,	a at a	No.5	No.6	No.7	No.8	No.9	Client's Limit
Length	Dry staining	4-5	4-5	4-5	4-5	4-5	2-3
	Wet staining	4-5	4-5	4-5	4-5	4-5	2-3
Samuel St.	Dry staining	2000 - 2000	The	,	- Jan	y 18th	2-3
Width	Wet staining	A - 4	- 20+	NITE I	71 - W	Aler.	2-3
Conclusion	The street of th	Pass	Pass	Pass	Pass	Pass	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

Note:

(1) Grey Scale Rating is based on the 5-step scale of 1 to 5, where 1 is bad and 5 is good.

Description for Specimen:


Specimen ID	Specimen No.	Specimen Description			
FSW2508220985CJ. 1	1 1	Light blue webbing			
FSW2508220985CJ. 2	2	Blue webbing			
FSW2508220985CJ. 3	3	Dark blue webbing			
FSW2508220985CJ. 4	4	Light green webbing			
FSW2508220985CJ. 5	5 1125	Green webbing			
FSW2508220985CJ. 6	6	Pink webbing			
FSW2508220985CJ. 7	MITE 7 NITE VI	Red webbing			
FSW2508220985CJ. 8 8		Orange webbing			


Specimen ID	Specimen No.	Specimen Description			
FSW2508220985CJ. 9	J+ _ 3 _ 5 1 _ 5 1	Black webbing			
FSW2508220985CJ. 10	10	White webbing			
FSW2508220985CJ. 11	mir 11 mir mir	Black plastic buckle			
FSW2508220985CJ. 12	12	Black plastic buckle			
FSW2508220985CJ. 13	13	Black plastic buckle			
FSW2508220985CJ. 14	14 15 25	Black plastic buckle			
FSW2508220985CJ. 15	15	Silvery metal ring			
FSW2508220985CJ. 16	16 000	Silvery metal buckle			
FSW2508220985CJ. 17	17	Silvery metal buckle			
FSW2508220985CJ. 18	18	Silvery metal rivet			
FSW2508220985CJ. 19	19	Silvery metal rivet			
FSW2508220985CJ. 20 20		Silvery metal buckle(whole test)			


Photograph of parts tested:

Remarks:

- 1. The results shown in this test report refer only to the sample(s) tested;
- 2. This test report cannot be reproduced, except in full, without prior written permission of the company;
- 3. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver;
- 4. The Applicant name and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which Waltek hasn't verified;
- 5. If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.
- 6. The sample material information (Model No. information) is provided by client, not verified by test laboratory. The samples of reference Model No. are not tested. Test laboratory not responsible for the accuracy, appropriateness, completeness and authenticity of the information provided by client.

===== End of Report =====