

# **EMC Test Report**

Report No.: STS2503039E01

Issued for

Mid Ocean Brands B.V.

7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong

Product Name: Laser pointer touch pen

Brand Name: N/A

Model Name: MO8097

Series Model(s): MO8193

EN IEC 55014-1:2021 Test Standards:

EN IEC 55014-2:2021

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.



Page 2 of 30 Report No.: STS2503039E01

#### **TEST REPORT**

Applicant's Name ...... Mid Ocean Brands B.V.

Address . 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

Hong Kong

Manufacturer's Name...... Mid Ocean Brands B.V.

Hong Kong

**Product description** 

Product Name .....: Laser pointer touch pen

Brand Name .....: N/A

Model Name..... MO8097

Series Model(s)..... MO8193

Test Standards ..... EN IEC 55014-1:2021

EN IEC 55014-2:2021

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Date of Test .....:

Date of Receipt of Test Item ...... 10 Mar. 2025

Date (s) of performance of Tests...... 10 Mar. 2025 ~ 14 Mar. 2025

Date of Issue .....: 14 Mar. 2025

Test Result .....: Pass

Testing Engineer: Stan Deng

(Star Deng)

Technical Manager :

(Tony Liu)

Authorized Signatory: [howy June]

(Bovey Yang)



# Page 3 of 30 Report No.: STS2503039E01

# **TABLE OF CONTENTS**

| 1. TEST SUMMARY                                    | 5  |
|----------------------------------------------------|----|
| 1.1 TEST FACTORY                                   | 6  |
| 1.2 MEASUREMENT UNCERTAINTY                        | 6  |
| 2. GENERAL INFORMATION                             | 7  |
| 2.1 GENERAL DESCRIPTION OF EUT                     | 7  |
| 2.2 DESCRIPTION OF TEST MODES                      | 8  |
| 2.3 DESCRIPTION OF TEST SETUP                      | 9  |
| 2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL | 9  |
| 2.5 MEASUREMENT INSTRUMENTS LIST                   | 10 |
| 3. EMC EMISSION TEST                               | 12 |
| 3.1 CONDUCTED EMISSION MEASUREMENT                 | 12 |
| 3.2 DISTURBANCE POWER MEASUREMENT                  | 14 |
| 3.3 RADIATED EMISSION MEASUREMENT                  | 16 |
| 4. EMC IMMUNITY TEST                               | 20 |
| 4.1 STANDARD COMPLIANCE/SERVRITY LEVEL/CRITERIA    | 20 |
| 4.2 GENERAL PERFORMANCE CRITERIA                   | 21 |
| 4.3 ESD TESTING                                    | 22 |
| 4.4 RS TESTING                                     | 26 |
| APPENDIX 1-Photo TEST OF EUT                       | 29 |



#### Page 4 of 30

# **Revision History**

Report No.: STS2503039E01

| Rev. | Issue Date   | Report No.    | Effect Page | Contents      |
|------|--------------|---------------|-------------|---------------|
| 00   | 14 Mar. 2025 | STS2503039E01 | ALL         | Initial Issue |
| 1    |              | 1             |             |               |



Page 5 of 30 Report No.: STS2503039E01

#### 1. TEST SUMMARY

Test procedures according to the technical standards:

| EMC Emission                   |                                                         |                         |          |          |  |  |  |
|--------------------------------|---------------------------------------------------------|-------------------------|----------|----------|--|--|--|
| Standard                       | Test Item                                               | Limit                   | Judgment | Remark   |  |  |  |
|                                | Conducted Emission on<br>Mains Ports<br>150kHz to 30MHz |                         | N/A      |          |  |  |  |
| EN IEC 55014-1:2021            | Disturbance Power(30-<br>300MHz)                        | Meets the requirements  | N/A      | NOTE (1) |  |  |  |
|                                | Radiated Emissions                                      |                         | PASS     |          |  |  |  |
|                                | EMC Immunity                                            |                         |          |          |  |  |  |
| Section<br>EN IEC 55014-2:2021 | Test Item                                               | Performance<br>Criteria | Judgment | Remark   |  |  |  |
| EN 61000-4-2:2009              | Electrostatic Discharge                                 | В                       | PASS     |          |  |  |  |
| EN IEC 61000-4-3:2020          | Continuous RF electromagnetic field disturbances        | А                       | PASS     |          |  |  |  |
| EN 61000-4-4:2012              | Electrical fast transients/burst                        | В                       | N/A      |          |  |  |  |
| EN 61000-4-5:2014/A1:2017      | Surges                                                  | В                       | N/A      |          |  |  |  |
| EN 61000-4-6:2014+AC:2015      | Continuous induced RF disturbances                      | А                       | N/A      |          |  |  |  |
| EN 61000-4-8:2010              | Power Frequency Magnetic Field                          | А                       | N/A      |          |  |  |  |
| EN IEC 61000-4-11:2020         | Voltage dips and interruptions                          | C/C/C                   | N/A      |          |  |  |  |

Note:

- (1) Clock frequency less than 30MHz and absorbing clamp met applicable limits (Table 7) reduced by the margin (Table 8).
- (2) For client's request and manual description, the test will not be executed.
- (3) "N/A" denotes test is not applicable in this Test Report



Page 6 of 30 Report No.: STS2503039E01

#### 1.1 TEST FACTORY

| Company Name:     | Shenzhen STS Test Services Co. Ltd.                                                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Address:          | 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China |
| Telephone:        | +86-755 3688 6288                                                                                                                             |
| Fax:              | +86-755 3688 6277                                                                                                                             |
|                   | FCC test Firm Registration Number: 625569                                                                                                     |
| Registration No.: | IC test Firm Registration Number: 12108A                                                                                                      |
|                   | A2LA Certificate No.: 4338.01                                                                                                                 |

#### 1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expended uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of  $\mathbf{k=2}$ , providing a level of confidence of approximately  $\mathbf{95}$  %.

# A. Conducted Measurement:

| Test Site | Method       | Measurement Frequency Range | U · (dB) | NOTE |
|-----------|--------------|-----------------------------|----------|------|
| STSC01    | CISPR 16-4-2 | 9KHz-150KHz                 | 2.19     |      |
|           |              | 150 KHz ~ 30MHz             | 2.53     |      |

#### B. Radiated Measurement:

| Test Site | Method       | Measurement Frequency Range | U·(dB) | NOTE |
|-----------|--------------|-----------------------------|--------|------|
| STSC02    | CISPR 16-4-2 | 30MHz ~ 1000MHz             | 4.18   |      |
|           |              | 1GHz ~ 6 GHz                | 4.90   |      |



Page 7 of 30 Report No.: STS2503039E01

#### 2. GENERAL INFORMATION

# 2.1 GENERAL DESCRIPTION OF EUT

| Product Name            | Laser pointer touch pen                                                                                                                                                                                                                                     |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brand Name              | N/A                                                                                                                                                                                                                                                         |
| Model Name              | MO8097                                                                                                                                                                                                                                                      |
| Series Model(s)         | MO8193                                                                                                                                                                                                                                                      |
| Model Difference        | Only the model name, appearance color and packaging box are different                                                                                                                                                                                       |
| Product Description     | The EUT is a Laser pointer touch pen.  Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an Home Appliances Device. More details of EUT technical specification, please refer to the User's Manual. |
| Immunity test category  | Category III                                                                                                                                                                                                                                                |
| Rating                  | Input: DC 1.5V*3                                                                                                                                                                                                                                            |
| Battery                 | N/A                                                                                                                                                                                                                                                         |
| Adapter                 | N/A                                                                                                                                                                                                                                                         |
| Hardware version number | N/A                                                                                                                                                                                                                                                         |
| Software version number | N/A                                                                                                                                                                                                                                                         |



Page 8 of 30 Report No.: STS2503039E01

#### 2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description   |
|--------------|---------------|
| Mode 1       | Lighting Mode |

| For Conducted Test          |               |  |
|-----------------------------|---------------|--|
| Final Test Mode Description |               |  |
| Mode 1                      | Lighting Mode |  |

| For Radiated Test           |               |  |
|-----------------------------|---------------|--|
| Final Test Mode Description |               |  |
| Mode 1                      | Lighting Mode |  |

| For EMS Test                |  |  |
|-----------------------------|--|--|
| Final Test Mode Description |  |  |
| Mode 1 Lighting Mode        |  |  |



Page 9 of 30 Report No.: STS2503039E01

#### 2.3 DESCRIPTION OF TEST SETUP

EUT

#### 2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Model/Type No. | Note |
|------|-----------|-----------|----------------|------|
| N/A  | N/A       | N/A       | N/A            | N/A  |

| Item | Equipment | Ferrite Core | Length | Note |
|------|-----------|--------------|--------|------|
| N/A  | N/A       | N/A          | N/A    | N/A  |

#### Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <sup>®</sup> Length <sup>®</sup> column.



Page 10 of 30 Report No.: STS2503039E01

# 2.5 MEASUREMENT INSTRUMENTS LIST

# 2.5.1 CONDUCTED TEST SITE

| Kind of Equipment      | Manufacturer               | Type No.   | Serial No. | Last Calibration | Calibrated Until |  |  |
|------------------------|----------------------------|------------|------------|------------------|------------------|--|--|
| EMI Test Receiver      | R&S                        | ESCI       | 101427     | 2024.9.23        | 2025.9.22        |  |  |
| LISN                   | R&S                        | AiT-F01220 | 8130179    | 2024.9.23        | 2025.9.22        |  |  |
| Absorbing Clamp        | R&S                        | MDS-21     | 100668     | 2024.4.15        | 2025.4.14        |  |  |
| CE Cable               | N/A                        | C01        | N/A        | 2024.9.23        | 2025.9.22        |  |  |
| Temperature & Humidity | Anymetre                   | JR900      | 240686     | 2024.10.15       | 2025.10.14       |  |  |
| Testing Software       | EZ-EMC(Ver.STSLAB-03A1 CE) |            |            |                  |                  |  |  |

#### 2.5.2 RADIATED TEST SITE

| Kind of Equipment            | Manufacturer               | Type No.   | Serial No. | Last<br>Calibration | Calibrated<br>Until |  |
|------------------------------|----------------------------|------------|------------|---------------------|---------------------|--|
| EMI Test Receiver            | R&S                        | ESCI       | 101427     | 2024.9.23           | 2025.9.22           |  |
| Bi-log Antenna               | TESEQ                      | CBL6111D   | 45873      | 2024.9.28           | 2025.9.27           |  |
| Horn Antenna                 | SCHWARZBECK                | BBHA 9120D | 9120D-1343 | 2024.9.28           | 2025.9.27           |  |
| Pre-amplifier(1G-26.5G)      | Agilent                    | HP8449B    | 3008A02383 | 2025.2.21           | 2026.2.20           |  |
| Pre-amplifier(0.1M-<br>3GHz) | EM                         | EM330      | 060665     | 2025.2.21           | 2026.2.20           |  |
| Spectrum Analyzer            | Agilent                    | N9020A     | MY49100060 | 2024.9.23           | 2025.9.22           |  |
| RE Cable (9K-1G)             | N/A                        | R01        | N/A        | 2024.9.23           | 2025.9.22           |  |
| RE Cable (1G-26G)            | N/A                        | R02        | N/A        | 2024.9.23           | 2025.9.22           |  |
| Temperature & Humidity       | Mieo                       | HH660      | N/A        | 2024.9.26           | 2025.9.25           |  |
| SAC                          | ChengYu                    | 9*6*6      | N/A        | 2023.9.05           | 2026.9.06           |  |
| Testing Software             | EZ-EMC(Ver.STSLAB-03A1 RE) |            |            |                     |                     |  |

#### 2.5.3 ESD

| Kind of Equipment      | Manufacturer | Type No. | Serial No. | Last Calibration | Calibrated Until |
|------------------------|--------------|----------|------------|------------------|------------------|
| ESD TEST<br>GENERATOR  | TESEQ        | NSG438   | 1175       | 2024.10.14       | 2025.10.13       |
| Temperature & Humidity | N/A          | WS1066   | N/A        | 2025.2.24        | 2026.2.23        |



Page 11 of 30 Report No.: STS2503039E01

# 2.5.4 RS

| Kind of Equipment                          | Manufacturer | Type No.              | Serial No. | Last Calibration | Calibrated<br>Until |
|--------------------------------------------|--------------|-----------------------|------------|------------------|---------------------|
| Power Meter                                | Agilent      | E4419B                | QB43312265 | 2024.9.23        | 2025.9.22           |
| Power Sensor                               | hp           | E9300A                | US39210170 | 2024.9.23        | 2025.9.22           |
| Power Sensor                               | hp           | E9300A                | US39210476 | 2024.9.23        | 2025.9.22           |
| Signal Generator                           | Agilent      | N5181A                | MY56144718 | 2024.9.23        | 2025.9.22           |
| Power Amplifier                            | MICOTOP      | MPA-80-1000-250       | MPA1711489 | 2024.9.23        | 2025.9.22           |
| Power Amplifier                            | MICOTOP      | MPA-1000-6000-<br>100 | MPA1904132 | 2024.9.23        | 2025.9.22           |
| RS Test Antenna<br>(80-1GHz)               | SCHWARZBECK  | VULP 9118E            | 000999     | N/A              | N/A                 |
| RS Test Antenna<br>(1G-10GHz)              | SCHWARZBECK  | STLP 9149             | 000648     | N/A              | N/A                 |
| Universal Radio<br>Communication<br>Tester | R&S          | CMU200                | 116337     | 2025.2.21        | 2026.2.20           |
| Audio Analyzer                             | R&S          | UPL                   | 100689     | 2025.2.21        | 2026.2.20           |
| Audio<br>Breakthrough<br>Shielding Box     | SKET         | SB_ABT/C35            | N/A        | N/A              | N/A                 |
| Ear Simulator                              | SKET         | AE_ABT/C35            | N/A        | N/A              | N/A                 |
| Mouth Simulator                            | SKET         | AM_ABT/C35            | N/A        | N/A              | N/A                 |
| 1KHz Standard<br>Source                    | SKET         | MSC_ABT/C35           | N/A        | 2024.9.24        | 2025.9.23           |
| Field Probe                                | Narda        | EP601                 | 611WX80261 | 2025.2.23        | 2026.2.22           |
| Temperature & Humidity                     | Anymetre     | JR900                 | 240686     | 2024.10.15       | 2025.10.14          |
| Testing Software                           | 1            | EMC-S                 | V1.4.0.53  |                  |                     |



Page 12 of 30 Report No.: STS2503039E01

#### 3. EMC EMISSION TEST

#### 3.1 CONDUCTED EMISSION MEASUREMENT

# 3.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150KHz-30MHz)

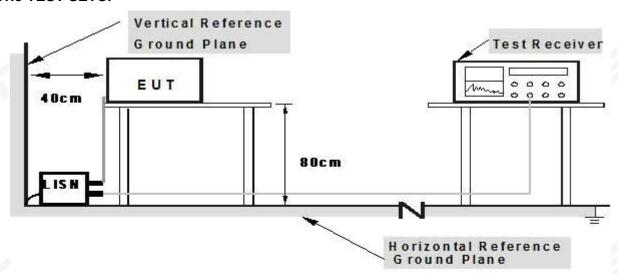
| FREQUENCY (MHz) |            | s and additional<br>s (dBuV) | At mains terminals (dBuV) |           |  |
|-----------------|------------|------------------------------|---------------------------|-----------|--|
|                 | Quasi-peak | Average                      | Quasi-peak                | Average   |  |
| 0.15 - 0.5      | 80.00      | 70.00                        | 66 - 56 *                 | 59 - 46 * |  |
| 0.50 - 5.0      | 74.00      | 64.00                        | 56.00                     | 46.00     |  |
| 5.0 – 30.0      | 74.00      | 64.00                        | 60.00                     | 50.00     |  |

#### Note:

- (1) The tighter limit applies at the band edges.
- The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |


#### 3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. For the actual test configuration, please refer to the related Item -EUT Test Photos.



Page 13 of 30 Report No.: STS2503039E01

#### 3.1.3 TEST SETUP



Note: 1.Support units were connected to second LISM.

2.Both of LISMs (AMM) are 80 cm from EUT and at least 80 from other units and other metal planes

#### 3.1.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

#### 3.1.5 TEST RESULTS

| Temperature:  | °C  | Relative Humidity: | %   |
|---------------|-----|--------------------|-----|
| Phase:        | L/N | Test Mode:         | N/A |
| Test Voltage: | N/A | Test Date:         | N/A |

Note: test is not applicable.



Page 14 of 30 Report No.: STS2503039E01

#### 3.2 DISTURBANCE POWER MEASUREMENT

#### 3.2.1 LIMITS OF THE DISTURBANCE POWER MEASUREMENT (30MHz-300MHz)

Table 7 - Disturbance power limits - 30 MHz to 300 MHz

|                                        | Iab                                          | ic I - Dist         | urbance p              | OWEL IIIIII     | 5 - 30 WII IZ          | to 300 Mil      |                        |                 |
|----------------------------------------|----------------------------------------------|---------------------|------------------------|-----------------|------------------------|-----------------|------------------------|-----------------|
| <b></b>                                |                                              |                     |                        |                 | To                     | ols             |                        |                 |
| Frequency<br>range                     | General                                      |                     | P≤700 W                |                 | 700 W < P≤<br>1000W    |                 | P > 1 000 W            |                 |
| 1                                      | 2                                            | 3                   | 4                      | 5               | 6                      | 7               | 8                      | 9               |
| MHz                                    | Quasi-<br>peak                               | Averag<br>e<br>dBpW | Quasi-<br>peak<br>dBpW | Average<br>dBpW | Quasi-<br>peak<br>dBpW | Average<br>dBpW | Quasi-<br>peak<br>dBpW | Average<br>dBpW |
| 00 000                                 | Increasing linearly with the frequency from: |                     |                        |                 |                        |                 |                        |                 |
| 30 ~ 300                               | 44 ~ 55                                      | 35 ~ 45             | 44 ~ 55                | 35 ~ 45         | 49 ~ 59                | 39 ~ 49         | 55 ~ 65                | 45 ~ 55         |
| Key P = rated power of the motor only. |                                              |                     |                        |                 |                        |                 |                        |                 |

If the quasi-peak measurements meet the average limit, the EUT shall be deemed to meet both limits and the measurements using the average detector need not be carried out.

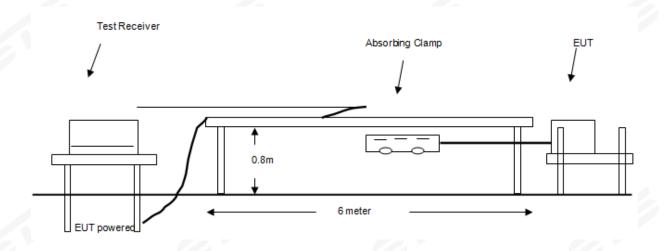
Table 8 - Reduction applicable to Table 7 limits

| Frague and a       |                                                                             |                 |                        |                 | To                     | ools            |                        |                 |
|--------------------|-----------------------------------------------------------------------------|-----------------|------------------------|-----------------|------------------------|-----------------|------------------------|-----------------|
| Frequency<br>range | General                                                                     |                 | P≤700 W                |                 | 700 W < P≤<br>1000W    |                 | P > 1 000 W            |                 |
| 1                  | 2                                                                           | 3               | 4                      | 5               | 6                      | 7               | 8                      | 9               |
| MHz                | Quasi-<br>peak                                                              | Average<br>dBpW | Quasi-<br>peak<br>dBpW | Average<br>dBpW | Quasi-<br>peak<br>dBpW | Average<br>dBpW | Quasi-<br>peak<br>dBpW | Average<br>dBpW |
| 222                | Increasing linearly with the frequency from:                                |                 |                        |                 |                        |                 |                        |                 |
| 200 ~ 300          | 0 ~ 10                                                                      | 0               | 0 ~ 10                 | 0               | 0 ~ 10                 | 0               | 0 ~ 10                 | 0               |
| NOTE This ta       | NOTE This table only applies if method a) specified in 4.3.4.2 is followed. |                 |                        |                 |                        |                 |                        |                 |

#### Notes:

- (1) The limit for radiated test was performed in the following: CISPR14.1
- (2) The tighter limit applies at the band edges.

#### 3.2.2 TEST PROCEDURE


- a. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. EUT as the center to the edge of the auxiliary device, the distance from the maximum edge to the center of the antenna is 3 meter.
- The height of antenna is varied from 1 meter to 4 meter above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meter and the rotatable table was turned from 0 degrees to 360 degree to find the maximum reading.
- The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1GHz.
- For the actual test configuration, please refer to the related Item –EUT Test Photos.



Page 15 of 30 Report No.: STS2503039E01

#### 3.2.3 TEST SETUP

Disturbance Power Test Set-Up



#### 3.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

# 3.2.5 DISTURBANCE POWER RESUL (30-300MHz)

| Temperature:  | °C  | Relative Humidity: | %   |
|---------------|-----|--------------------|-----|
| Phase:        | N/A | Test Mode:         | N/A |
| Test Voltage: | N/A | Test Date:         | N/A |

Note: Not applicable



Page 16 of 30 Report No.: STS2503039E01

#### 3.3 RADIATED EMISSION MEASUREMENT

#### 3.3.1 LIMITS OF RADIATED EMISSION MEASUREMENT

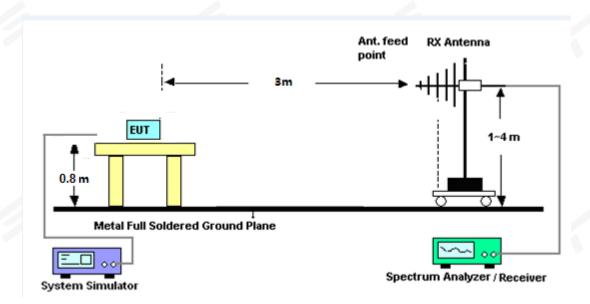
| FREQUENCY (MHz)  | At 10m              | At 3m               |  |
|------------------|---------------------|---------------------|--|
| PREQUENCT (MINZ) | Quasi-peak (dBuV/m) | Quasi-peak (dBuV/m) |  |
| 30 ~ 230         | 30                  | 40                  |  |
| 230 ~ 300        | 37                  | 47                  |  |
| 230 ~ 1000       | 37                  | 47                  |  |

| EDECHENCY (MLI-) | At 3m         |              |  |
|------------------|---------------|--------------|--|
| FREQUENCY (MHz)  | Peak (dBuV/m) | Avg (dBuV/m) |  |
| 1000 ~ 3000      | 70            | 50           |  |
| 3000 ~ 6000      | 74            | 54           |  |

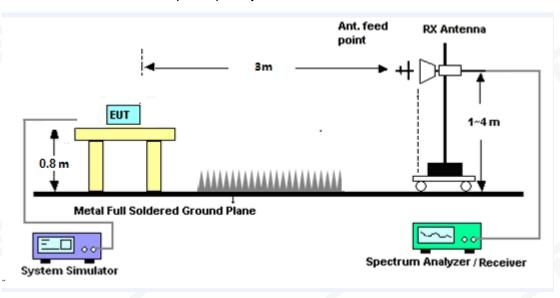
#### Notes:

- (1) The limit for radiated test was performed in the following: CISPR 14-1
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### 3.3.2 TEST PROCEDURE


- a. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. EUT as the center to the edge of the auxiliary device, the distance from the maximum edge to the center of the antenna is 3 meter.
- c. The height of antenna is varied from 1 meter to 4 meter above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meter and the rotatable table was turned from 0 degrees to 360 degree to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1GHz.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.




Page 17 of 30 Report No.: STS2503039E01

#### 3.3.3 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz



(B) Radiated Emission Test Set-Up Frequency Above 1GHz

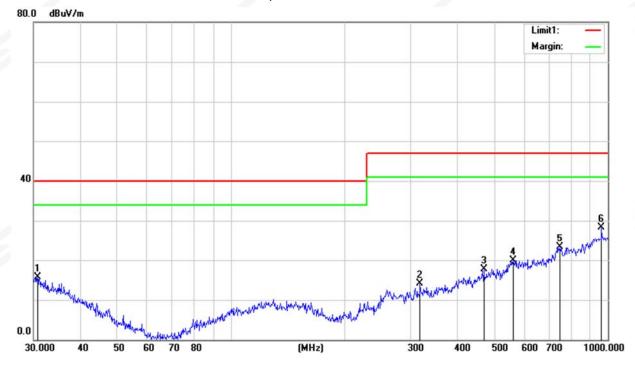


#### 3.3.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.



Page 18 of 30 Report No.: STS2503039E01


# 3.3.5 TEST RESULTS (30MHz-1000MHz)

| Temperature:  | 26.1℃                | Relative Humidity: | 53%        |
|---------------|----------------------|--------------------|------------|
| Phase:        | Horizontal           | Test Mode:         | Mode 1     |
| Test Voltage: | DC 4.5V from battery | Test Date:         | 2025.03.10 |

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor (dB) | Results<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|-------------|---------------------|-------------------|----------------|----------|
| 1   | 30.7455            | 27.18             | -11.45      | 15.73               | 40.00             | -24.27         | QP       |
| 2   | 317.7011           | 28.92             | -14.90      | 14.02               | 47.00             | -32.98         | QP       |
| 3   | 468.8762           | 29.04             | -11.38      | 17.66               | 47.00             | -29.34         | QP       |
| 4   | 560.6928           | 27.65             | -7.79       | 19.86               | 47.00             | -27.14         | QP       |
| 5   | 747.4825           | 28.01             | -4.79       | 23.22               | 47.00             | -23.78         | QP       |
| 6   | 962.1623           | 30.14             | -1.92       | 28.22               | 47.00             | -18.78         | QP       |

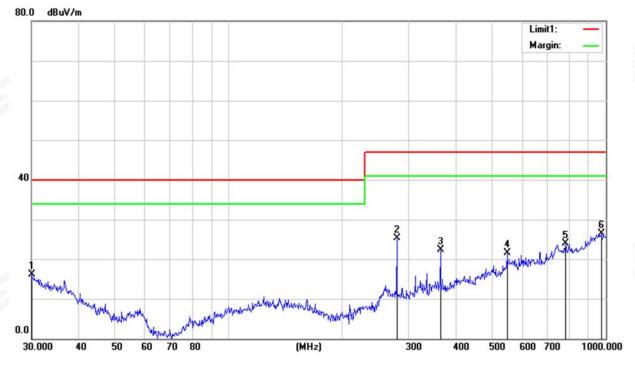
#### Remark:

- 1. All readings are Quasi-Peak.
- Margin = Result (Result = Reading + Factor ) Limit.
   Factor = Cable Loss + Antenna Factor Amplifier Gain.





#### Page 19 of 30


| Temperature:  | 26.1℃                | Relative Humidity: | 53%        |
|---------------|----------------------|--------------------|------------|
| Phase:        | Vertical             | Test Mode:         | Mode 1     |
| Test Voltage: | DC 4.5V from battery | Test Date:         | 2025.03.10 |

Report No.: STS2503039E01

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor (dB) | Results<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|-------------|---------------------|-------------------|----------------|----------|
| 1   | 30.0000            | 27.12             | -11.03      | 16.09               | 40.00             | -23.91         | QP       |
| 2   | 279.0436           | 41.15             | -15.80      | 25.35               | 47.00             | -21.65         | QP       |
| 3   | 364.2595           | 36.60             | -14.29      | 22.31               | 47.00             | -24.69         | QP       |
| 4   | 547.0977           | 30.15             | -8.72       | 21.43               | 47.00             | -25.57         | QP       |
| 5   | 782.3452           | 29.30             | -5.36       | 23.94               | 47.00             | -23.06         | QP       |
| 6   | 972.3374           | 28.46             | -2.03       | 26.43               | 47.00             | -20.57         | QP       |

#### Remark:

- 1. All readings are Quasi-Peak.
- 2. Margin = Result (Result = Reading + Factor )—Limit.
- 3. Factor= Cable Loss +Antenna Factor-Amplifier Gain.





Page 20 of 30 Report No.: STS2503039E01

# 4. EMC IMMUNITY TEST

# 4.1 STANDARD COMPLIANCE/SERVRITY LEVEL/CRITERIA

| Tests                      | TEST SPECIFICATION                         | Test Mode     | Perform. |
|----------------------------|--------------------------------------------|---------------|----------|
| Standard No.               | 1201 61 2011 10/111011                     | Test Ports    | Criteria |
| 1. ESD<br>IEC/EN 61000-4-2 | 8KV air discharge<br>4KV contact discharge | Direct Mode   | В        |
| 1EC/EN 61000-4-2           | 4KV HCP discharge<br>4KV VCP discharge     | Indirect Mode | В        |
| 2 DC                       | 80 MHz - 1000 MHz,                         |               |          |
| 2. RS<br>IEC/EN 61000-4-3  | 1000Hz, 80%,                               | Enclosure     | А        |
| 120/214 01000 4 3          | AM modulated                               |               |          |



Page 21 of 30 Report No.: STS2503039E01

#### **4.2 GENERAL PERFORMANCE CRITERIA**

According to EN 55014-2 standard, the general performance criteria as following:

|             | The apparatus shell continues to operate as intended without operator                 |
|-------------|---------------------------------------------------------------------------------------|
|             | intervention. No degradation of performance or loss of function is allowed below      |
|             | a performance level specified by the manufacturer, when the apparatus is used         |
| Criterion A | as intended. The performance level may be replaced by a permissible loss of           |
| Criterion A | performance. If the manufacturer does not specify the minimum performance             |
|             | level or the permissible performance loss, then either of these may be derived        |
|             | from the product description and documentation, and by what the user may              |
|             | reasonably expect from the equipment if used as intended.                             |
|             | After test, the apparatus shell continues to operate as intended without operator     |
|             | intervention. No degradation of performance or loss of function is allowed, after     |
|             | the application of the phenomenon below a performance level specified by the          |
|             | manufacturer, when the apparatus is used as intended. The performance level           |
|             | may be replaced by a permissible loss of performance.                                 |
| Criterion B | During the test, degradation of performance is however allowed. However, no           |
|             | change of operating state if stored data is allowed to persist after the test. If the |
|             | manufacturer does not specify the minimum performance level or the                    |
|             | permissible performance loss, then either of these may be derived from the            |
|             | product description and documentation, and by what the user may reasonably            |
|             | expect from the equipment if used as intended.                                        |
|             | Temporary loss of function is allowed, provided the functions is self-recoverable     |
|             | or can be restored by the operation of controls by the user in accordance with        |
| Criterion C | the manufacturer instructions.                                                        |
|             | Functions, and/or information stored in non-volatile memory, or protected by a        |
|             | battery backup, shall not be lost.                                                    |
|             |                                                                                       |

#### 4.2.1 GENERAL PERFORMANCE CRITERIA TEST SETUP

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.



Page 22 of 30 Report No.: STS2503039E01

#### 4.3 ESD TESTING

#### 4.3.1 TEST SPECIFICATION

| Basic Standard:       | IEC/EN 61000-4-2                                                                                                              |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Discharge Impedance:  | 330 ohm / 150 pF                                                                                                              |
| Required Performance: | В                                                                                                                             |
| Discharge Voltage:    | Air Discharge: 8KV (Direct)  Contact Discharge: 4KV (Direct/Indirect)                                                         |
| Polarity:             | Positive & Negative                                                                                                           |
| Number of Discharge:  | Air Discharge: at least 10 times on each point Contact Discharge: at least 10 times on each point 20 times at each test point |
| Discharge Mode:       | Single Discharge                                                                                                              |
| Discharge Period:     | 1 second minimum                                                                                                              |

#### **4.3.2 TEST PROCEDURE**

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation

The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.

The time interval between two successive single discharges was at least 1 second.

The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meter from the EUT.

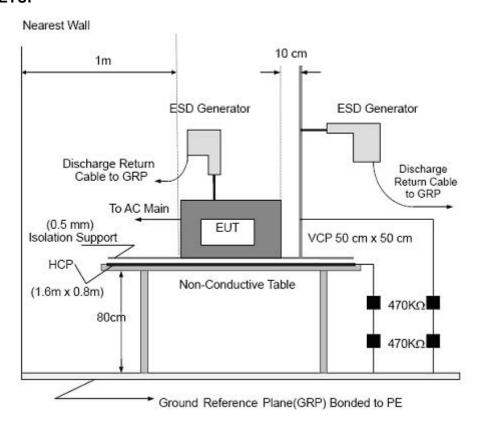
Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.

Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete. Vertical Coupling Plane (VCP):

The coupling plane of dimensions 0.5m x 0.5m, is placed parallel to and positioned at a distance 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.


#### b. Air discharges at insulation surfaces of the EUT.

It was at least ten single discharges with positive and negative at the same selected point.



Page 23 of 30 Report No.: STS2503039E01

#### 4.3.3 TEST SETUP



Note:

#### TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meter high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with  $940k\Omega$  total impedance. The equipment under test was installed in a representative system as described in section 7 of EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of 0.8-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

#### FLOOR-STANDING EQUIPMENT

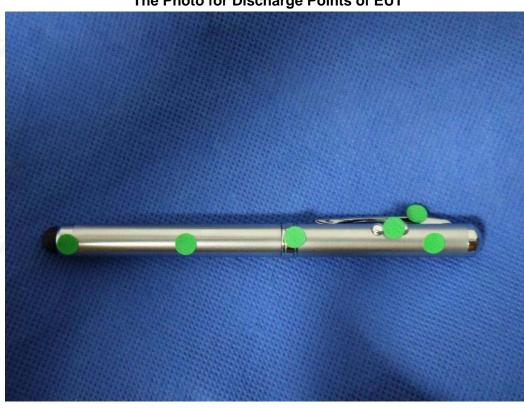
The equipment under test was installed in a representative system as described in section 7 of EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1 meter thickness. The GRP was consisted of a sheet of aluminum that is at least 0.25mm thick, and extended at least 0.5 meter from the EUT on all sides.



Page 24 of 30 Report No.: STS2503039E01

#### **4.3.4 TEST RESULTS**

| Temperature:  | 25.8°C               | Relative Humidity: | 53%    |
|---------------|----------------------|--------------------|--------|
| Test Date:    | 2025.03.11           | Test Mode:         | Mode 1 |
| Test Voltage: | DC 4.5V from battery |                    |        |


| Discharge<br>Level | Polarity | Test Points | Contact<br>Discharge | Air Discharge | Criterion | Test<br>Result |
|--------------------|----------|-------------|----------------------|---------------|-----------|----------------|
| 4                  | +/-      | VCP/HCP     | Note                 | N/A           | В         | А              |
| 4                  | +/-      | Green Dot   | Note                 | N/A           | В         | Α              |

Note: The EUT function was correct during the test Red Dot —Air Discharged Green Dot —Contact Discharged



Page 25 of 30 Report No.: STS2503039E01

The Photo for Discharge Points of EUT







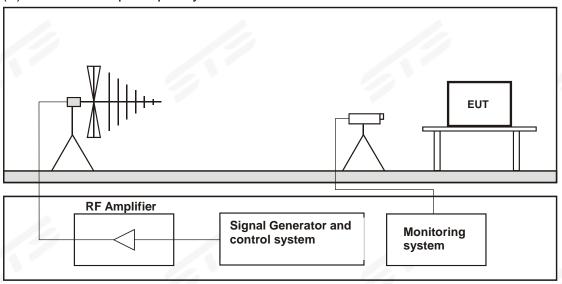
Page 26 of 30 Report No.: STS2503039E01

#### **4.4 RS TESTING**

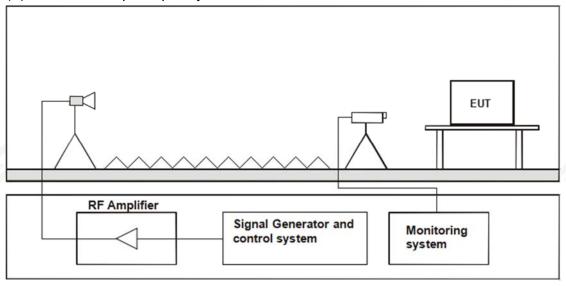
#### **4.4.1 TEST SPECIFICATION**

| Basic Standard:       | IEC/EN 61000-4-3                   |  |
|-----------------------|------------------------------------|--|
| Required Performance: | A                                  |  |
| Test Frequency Range: | 80 MHz - 1000 MHz                  |  |
| Field Strength:       | 3 V/m                              |  |
| Modulation:           | 1kHz Sine Wave, 80%, AM Modulation |  |
| Frequency Step:       | 1 % of fundamental                 |  |
| Polarity of Antenna:  | Horizontal and Vertical            |  |
| Test Distance:        | 3 m                                |  |
| Antenna Height:       | 1.5 m                              |  |
| Dwell Time:           | at least 3 seconds                 |  |

#### 4.4.2 TEST PROCEDURE


- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1kHz sine-wave. The rate of sweep did not exceed 3s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- e) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.




Page 27 of 30 Report No.: STS2503039E01

#### 4.4.3 TEST SETUP

#### (A) RS Test Set-Up Frequency Below 1GHz



#### (B) RS Test Set-Up Frequency Above 1GHz



Note:

#### **TABLE-TOP EQUIPMENT**

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

#### FLOOR-STANDING EQUIPMENT

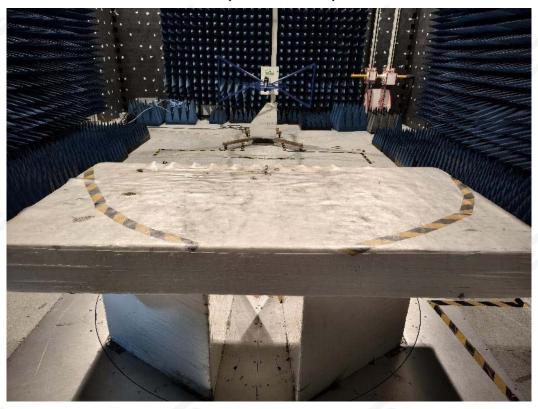
The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.



Page 28 of 30 Report No.: STS2503039E01

# 4.4.4 TEST RESULTS

| Temperature:  | 25.8℃                | Relative Humidity: | 53%    |
|---------------|----------------------|--------------------|--------|
| Test Date:    | 2025.03.11           | Test Mode:         | Mode 1 |
| Test Voltage: | DC 4.5V from battery |                    |        |


| Frequency Range<br>(MHz) | RF Field<br>Position | R.F.<br>Field Strength                     | Azimuth | Perform.<br>Criteria | Results | Judgement |
|--------------------------|----------------------|--------------------------------------------|---------|----------------------|---------|-----------|
| 80MHz - 1000MHz          | H/V                  | 3 V/m (rms)<br>AM Modulated<br>1000Hz, 80% | Front   | Α                    | А       | PASS      |
|                          |                      |                                            | Rear    |                      |         |           |
|                          |                      |                                            | Left    |                      |         |           |
|                          |                      |                                            | Right   |                      |         |           |



Page 29 of 30 Report No.: STS2503039E01

# **APPENDIX 1-Photo TEST OF EUT**

RE (30 - 1000 MHz)



**ESD** 





Page 30 of 30 Report No.: STS2503039E01

RS (80 - 1000 MHz)



\* \* \* \* \* END OF THE REPORT \* \* \* \* \*