

EMC Test Report

Report No.: AGC05443231209ER01

PRODUCT DESIGNATION: Magnetic wireless charger

BRAND NAME : N/A

MODEL NAME : M06874

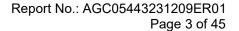
APPLICANT: MID OCEAN BRANDS B.V

DATE OF ISSUE : Dec. 14, 2023

STANDARD(S) : ETSI EN 301 489-1 V2.2.3 (2019-11)

ETSI EN 301489-3 V2.3.2 (2023-01)

REPORT VERSION: V1.0



Page 2 of 45

REPORT REVISE RECORD

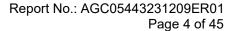

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Dec. 14, 2023	Valid	Initial Release

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	6
2. GENERAL INFORMATION	7
2.1. DESCRIPTION OF EUT	7
2.2. OBJECTIVE	7
2.3. TEST STANDARDS AND RESULTS	7
2.4. TEST ITEMS AND THE RESULTS	8
2.5. ENVIRONMENTAL CONDITIONS	8
3. TEST MODE DESCRIPTION	9
4. MEASUREMENT UNCERTAINTY	10
5. SUPPORT EQUIPMENT	11
6. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	12
7. RADIATED DISTURBANCE MEASUREMENT	14
7.1. LIMITS OF RADIATED DISTURBANCES	14
7.2. TEST PROCEDURE	14
7.3. BLOCK DIAGRAM OF TEST SETUP	15
7.4 TEST RESULT	16
8. MAINS TERMINAL DISTURBANCE VOLTAGE MEASUREMENT	18
8.1. LIMITS OF MAINS TERMINAL DISTURBANCE VOLTAGE	18
8.2. TEST PROCEDURE	18
8.3. TEST SETUP	18
8.4. TEST RESULT	19
9. HARMONIC CURRENT MEASUREMENT	21
9.1. LIMITS OF HARMONIC CURRENT	21
9.2. TEST PROCEDURE	21
9.3. TEST SETUP	22
9.4. TEST RESULT	22
10. VOLTAGE FLUCTUATIONS AND FLICK MEASUREMENT	23
10.1. LIMITS OF VOLTAGE FLUCTUATIONS AND FLICK	23
10.2. TEST PROCEDURE	23
10.3. TEST SETUP	23
10.4. TEST RESULT	23
11. IMMUNITY TEST	24
11.1. DESCRIPTION OF PERFORMANCE CRITERIA	24
11.2. GENERAL PERFORMANCE CRITERIA	24
12 ELECTROSTATIC DISCHARGE IMMUNITY TEST	26

12.1. TEST SPECIFICATION	26
12.2. TEST PROCEDURE	26
12.3. TEST SETUP	27
12.4. TEST RESULT	29
12.5. PERFORMANCE	29
13. RADIATED, RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY TEST	30
13.1. TEST SPECIFICATION	30
13.2. TEST PROCEDURE	30
13.3. TEST SETUP	31
13.4. TEST RESULT	32
13.5. PERFORMANCE	32
14. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	33
14.1. TEST SPECIFICATION	33
14.2. TEST PROCEDURE	33
14.3. TEST SETUP	33
14.4. TEST RESULT	34
14.5. PERFORMANCE	34
15. SURGE IMMUNITY TEST	35
15.1. TEST SPECIFICATION	35
15.2. TEST PROCEDURE	35
15.3. TEST SETUP	35
15.4. TEST RESULT	36
15.5. PERFORMANCE	36
16. IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS	37
16.1. TEST SPECIFICATION	37
16.2. TEST PROCEDURE	37
16.3. TEST SETUP	37
16.4. TEST RESULT	38
16.5. PERFORMANCE	38
17. VOLTAGE DIPS AND SHORT INTERRUPTIONS IMMUNITY TEST	39
17.1. TEST SPECIFICATION	39
17.2. TEST PROCEDURE	39
17.3. TEST SETUP	39
17.4. TEST RESULT	40
17.5. PERFORMANCE	40
APPENDIX I: PHOTOGRAPHS OF TEST SETUP	41

Page 5 of 45

APPENDIX II: PHOTOGRAPHS OF THE EUT45

Page 6 of 45

1. TEST REPORT CERTIFICATION

Applicant	MID OCEAN BRANDS B.V	
Address	Unit 201 2/F,. Laford Centre,838 Lai Chi Kok Road, Cheung Sha Wan, Kowloon, Hongkong	
Manufacturer	MID OCEAN BRANDS B.V	
Address	Unit 201 2/F,. Laford Centre,838 Lai Chi Kok Road, Cheung Sha Wan, Kowloon, Hongkong	
Factory	N/A	
Address	N/A	
Product Designation	Magnetic wireless charger	
Brand Name	N/A	
Test Model	MO6874	
Series Model(s)	N/A	
Difference Description	N/A	
Date of receipt of test item	Dec. 08, 2023	
Date of test	Dec. 08, 2023 to Dec. 14, 2023	
Deviation	None	
Condition of Test Sample	Normal	
Test Result	Pass	
Report Template	AGCRT-EC-EMC	

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By	Thea Huang		
	Thea Huang (Project Engineer)	Dec. 14, 2023	
Reviewed By	Calin Lin		
	Calvin Liu (Reviewer)	Dec. 14, 2023	
Approved By	Max Zhang		
-	Max Zhang (Authorized Officer)	Dec. 14, 2023	

Page 7 of 45

2. GENERAL INFORMATION

2.1. DESCRIPTION OF EUT

Details of technical specification refer to the description in follows:

Operating Frequency	110KHz-205KHz		
Hardware Version	V1.0		
Software Version	V1.0		
Antenna Type	Coil Antenna		
Wireless Charging Power	15 W Max.		
	Type C Input: DC5V 2.4A,9V 2A		
Power Supply	Type C Output: DC 5V 3A,9V 2.22A,12V 1.66A		
Power Supply	Wireless Output: DC5V 1A,7.5V 1A,9V 1.12A,9V 1.66A		
	Capacity: 5000mAh/18.5Wh		

2.2. OBJECTIVE

Perform Electro Magnetic Interference (EMI) and Electro Magnetic Susceptibility (EMS) tests for CE Marking.

2.3. TEST STANDARDS AND RESULTS

The EUT has been tested according to ETSI EN 301 489-1 V2.2.3 (2019-11) and ETSI EN 301489-3 V2.3.2 (2023-01).

	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part	
ETSI EN 301 489-1	1: Common technical requirements; Harmonised Standard for ElectroMagnetic	
	Compatibility.	
ETSI EN 301 489-3	Electro Magnetic Compatibility (EMC) standard for radio equipment and services;	
	Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies	
	between 9 kHz and 246 GHz; Harmonised Standard covering the essential	
	requirements of article 3.1(b) of Directive 2014/53/EU	

Page 8 of 45

2.4. TEST ITEMS AND THE RESULTS

No.	Basic Standard	Test Type	Result		
EMIS	EMISSION (EN 301 489-1 §7.1)				
1	EN 55032	Radiated emission	PASS		
2	EN 55032	Conducted emission, AC ports	PASS		
3	EN 55032	Conducted emission, Telecom ports	N/A		
4	EN 61000-3-2	Harmonic current emissions	PASS		
5	EN 61000-3-3	Voltage fluctuations & flicker	PASS		
IMM	UNITY (EN 301 489-1 §	(7.2)			
6	EN 61000-4-2	Electrostatic discharge immunity	PASS		
7	EN 61000-4-3	Radiated RF electromagnetic field immunity	PASS		
8	EN 61000-4-4	Electrical fast transient/burst immunity	PASS		
9	ISO 7637-1, -2	Transients and surges, DC ports	N/A		
10	EN 61000-4-5	Surge immunity, AC ports	PASS		
11	EN 61000-4-6	Immunity to conducted disturbances induced by RF fields	PASS		
12	EN 61000-4-11	Voltage dips and short interruptions immunity	PASS		

Note: 1. N/A- Not Applicable.

2. The latest versions of basic standards are applied.

2.5. ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35°CRelative humidity: 30-60%

- Atmospheric pressure: 86-106kPa

Page 9 of 45

3. TEST MODE DESCRIPTION

TEST MODE DESCRIPTION				
NO.	EMI TEST MODE DESCRIPTION	WORST		
1	Adapter(9V/2A) + EUT + Wireless load(Full load)			
2	Adapter(9V/2A) + EUT + Wireless load(half load)			
3	Adapter(9V/2A) + EUT + Wireless load(null load)			
4	Adapter(5V/2.4A) + EUT + Wireless load(Full load)			
5	EUT +Wireless load(Full load)			
6	EUT +Wireless load(half load)			
7	EUT +Wireless load(null load)			
NO.	EMS TEST MODE DESCRIPTION	WORST		
1	Adapter(9V/2A) + EUT + Wireless load(Full load)			
2	Adapter(9V/2A) + EUT + Wireless load(half load)			
3	Adapter(9V/2A) + EUT + Wireless load(null load)			
4	Adapter(5V/2.4A) + EUT + Wireless load(Full load)			
5	EUT +Wireless load(Full load)			
6	EUT +Wireless load(half load)			
7	EUT +Wireless load(null load)			

I/O Port Information (⊠ Applicable ☐ Not Applicable)

I/O Port of EUT				
I/O Port Type	Number	Cable Description	Tested With	
Type-C Port	1	0.3m unshielded	1	

Page 10 of 45

4. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in measurement" (GUM) published by CISPR and ANSI.

- Uncertainty of Conducted Emission, Uc = ±2.9dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.9 dB

Page 11 of 45

5. SUPPORT EQUIPMENT

Product Name	Manufacturer	Model	Mains cable	Signal cable	Specifications
wireless charging load	Huawei	N/A			Support 5W,7.5W,10W,15 W
Adapter	jinbaotong	K-T10E0502000E			AC100-240V,50-60 Hz,0.35A,DC5V/2 A

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Page 12 of 45

6. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION

Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Test Receiver	R&S	ESPI	101206	Jun. 03, 2023	Jun. 02, 2024
Artificial power network	R&S	ESH2-Z5	100086	Jun. 03, 2023	Jun. 02, 2024
Test Software	R&S	V1.71	N/A	N/A	N/A

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Test Receiver	RS	ESCI	10096	Feb. 18, 2023	Feb. 17, 2024
Wideband Antenna	SCHWARZBEC K	VULB9168	D69250	May 11, 2023	May 10, 2025
Test software	FARA	V.RA-03A	N/A	N/A	N/A

TEST EQUIPMENT OF POWER HARMONICS / VOLTAGE FLUCTUATION / FLICKER TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Signal Conditioning Unit	Schaffner	CCN1000-1	72431	Jun. 08, 2023	Jun. 07, 2024
AC Source	Schaffner	NSG 1007	56825	Jun. 02, 2023	Jun. 01, 2024
Test Software	TC	4.29.0	N/A	N/A	N/A

TEST EQUIPMENT OF ESD TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
ESD Simulator	Schaffner	NSG 438	782	Dec. 30, 2022	Dec. 29, 2023

Page 13 of 45

TEST EQUIPMENT OF SURGE/EFT/DIPS TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Lightning Surge/EFT/DIPS Generator	Schaffner	Modula 6150	34437	Jun. 08, 2023	Jun. 07, 2024
Test Software	TC	2.31	N/A	N/A	N/A

TEST EQUIPMENT OF RS IMMUNITY TEST

TEST EQUIT MENT						
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due	
Signal Generator	Aglient	N5182A	MY50140530	Feb.17, 2023	Feb.16, 2024	
Directional coupler	Werlatone	C5571-10	99463	Mar. 10, 2022	Mar. 09, 2024	
Directional coupler	Werlatone	C5571-10	99482	Mar. 10, 2022	Mar. 09, 2024	
Power Meter	R&S	NRVD	8323781027	Mar. 24, 2023	Mar. 23, 2025	
Power Amplifier	KALMUS	7100LC	04-02/17-06-001	N/A	N/A	
Power Amplifier	Milmega	AS0104-55_55	1004793	N/A	N/A	
Power amplifer	rflight	NTWPA-25601 00	17063183	N/A	N/A	
Biconilog Antenna	ETS	3142C	00060447	N/A	N/A	
Broadband High Gain Horn Antenna	SCHWARZBECK	BBHA 9120 J	00073	N/A	N/A	
Test Software	Tonscend	2.0.1.8	N/A	N/A	N/A	

TEST FOUIPMENT OF CS IMMUNITY TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Power amplifer	AR	75A250	18464	N/A	N/A
CDN	KNORR	T4-1	10215	Jun. 02, 2023	Jun. 01, 2025
6dB attenuator	ZHINAN	E-002	N/A	Aug. 04, 2022	Aug. 03, 2024
Power Probe	R&S	URV5-Z4	100124	Mar. 24, 2023	Mar. 23, 2025
Power Meter	R&S	NRVD	8323781027	Mar. 24, 2023	Mar. 23, 2025
Signal Generator	Aglient	E4421B	MY43351603	Feb. 17, 2023	Feb. 16, 2024
Directional coupler	Werlatone	C5571-10	99463	63 Mar. 10, 2022 Mar	
Test Software	Tonscend	2.0.1.7	N/A	N/A	N/A

Page 14 of 45

7. RADIATED DISTURBANCE MEASUREMENT

7.1. LIMITS OF RADIATED DISTURBANCES

Limits for radiated disturbance 30M to1 GHz at a measurement distance of 3 m

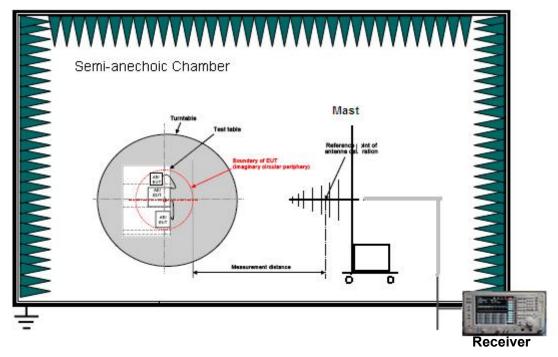
Frequency range (MHz)	Quasi peak limits(dBuV/m), for Class B ITE, at 3m measurement distance
30-230	40
230-1000	47

Note: 1. The lower limit shall apply at the transition frequency.

2. Additional provisions may be required for cases where interference occurs.

7.2. TEST PROCEDURE

- (1). The EUT was placed on the top of an insulating table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2). The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- (3). The antenna is a broadband antenna, and its height is varied from 1 to 4 meter above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- (4). For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to the heights from 1 to 4 meters and the ratable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- (5). The test-receiver system was set to Peak Detector Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emission that did not have 10dB margin would be retested one by one using the quasi-peak method.

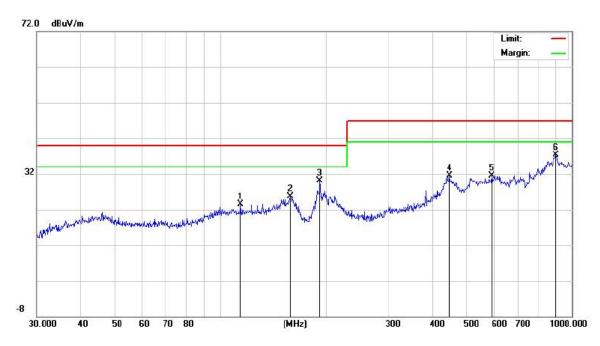


Page 15 of 45

7.3. BLOCK DIAGRAM OF TEST SETUP

System Diagram of Connections between EUT and Simulators

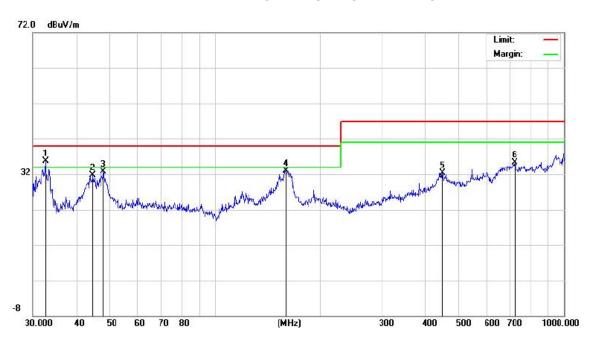
Radiated Disturbance below 1 GHz


For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.4 TEST RESULT

The worst test mode of the EUT was Mode 2, and its test data was showed as the follow:

RADIATED EMISSION BELOW 1GHZ-HORIZONTAL



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	1	14.1138	7.21	16.34	23.55	40.00	-16.45	peak
2	1	58.1123	13.19	12.48	25.67	40.00	-14.33	peak
3	1	91.7450	16.47	13.55	30.02	40.00	-9.98	peak
4	4	147.9822	6.73	24.82	31.55	47.00	-15.45	peak
5	5	90.9737	6.79	24.74	31.53	47.00	-15.47	peak
6	* (000.1474	5.55	31.78	37.33	47.00	-9.67	peak

RESULT: PASS

RADIATED EMISSION BELOW 1GHZ-VERTICAL

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	32.6340	21.22	14.47	35.69	40.00	-4.31	peak
2		44.5868	14.84	16.95	31.79	40.00	-8.21	peak
3		47.8260	15.70	16.98	32.68	40.00	-7.32	peak
4	9	159.2251	14.61	18.20	32.81	40.00	-7.19	peak
5	b	447.9822	6.57	25.74	32.31	47.00	-14.69	peak
6	70.00	721.7259	6.73	28.64	35.37	47.00	-11.63	peak

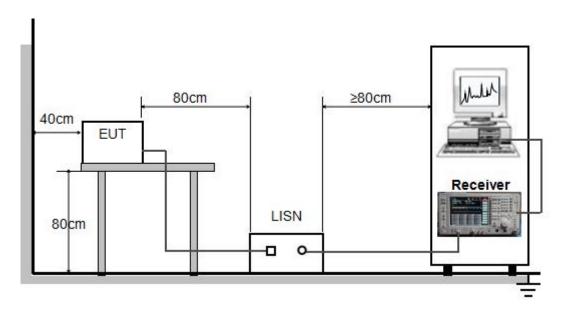
RESULT: PASS

Page 18 of 45

8. MAINS TERMINAL DISTURBANCE VOLTAGE MEASUREMENT

8.1. LIMITS OF MAINS TERMINAL DISTURBANCE VOLTAGE

Eraguanay ranga (MUz)	Limits (dBuV	Limits (dBuV) Class B ITE				
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.50	66 to 56	56 to 46				
0.50-5	56	46				
5-30	60	50				

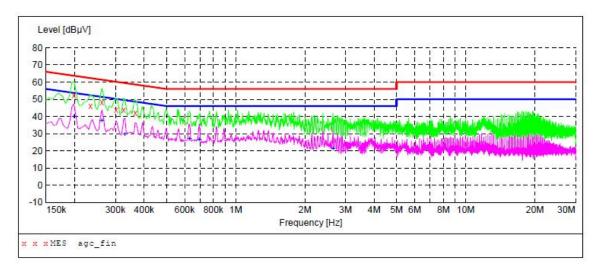

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

8.2. TEST PROCEDURE

- (1) The EUT was placed 0.4 meters from the conducting wall of shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provide $50\Omega/50\mu H$ of coupling impedance for the measuring instrument.
- (2) Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- (3)The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 20dB under the prescribed limits are not reported.

8.3. TEST SETUP


For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

8.4. TEST RESULT

The worst test mode of the EUT was Mode 4, and its test data was showed as the follow:

LINE CONCUTED EMISSION TEST-L

MEASUREMENT RESULT: "agc_fin"

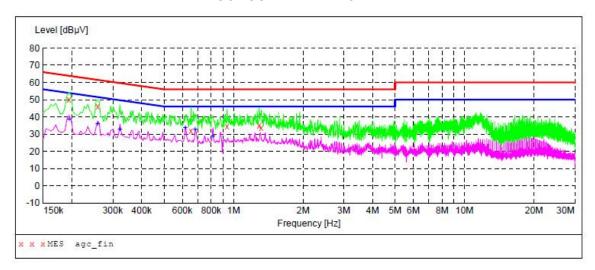
2023/12/11 14:55

2023/12/11 15	1.00					
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line
0.198000	52.10	6.1	64	11.6	QP	L1
0.234000	46.00	6.1	62	16.3	QP	L1
0.262000	48.30	6.1	61	13.1	QP	L1
0.302000	43.70	6.1	60	16.5	QP	L1
0.326000	43.90	6.1	60	15.7	QP	L1
0.366000	41.90	6.1	59	16.7	QP	L1

MEASUREMENT RESULT: "agc fin2"

2023/12/11 14:55

Frequency	Level	Transd	Limit	Margin	Detector	Line
MHz	dBµV	dB	dΒμV	dB		
0.198000	39.80	6.1	54	13.9	AV	L1
0.262000	37.60	6.1	51	13.8	AV	L1
0.330000	29.60	6.1	50	19.9	AV	L1
0.630000	26.80	6.2	46	19.2	AV	L1
0.694000	26.70	6.2	46	19.3	AV	L1
2.646000	21.10	6.3	46	24.9	AV	L1


RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

LINE CONCUTED EMISSION TEST-N

MEASUREMENT RESULT: "agc fin"

2023/12/11 14			- * * * * * * * * * * * * * * * * * * *	044 00000000000000000000000000000000000		
Frequency	Level	Transd	Limit	Margin	Detector	Line
MHz	dΒμV	dB	dBµV	dB		
0.194000	50.20	6.1	64	13.7	QP	N
0.258000	46.20	6.1	62	15.3	QP	N
0.654000	32.00	6.2	56	24.0	QP	N
0.938000	34.60	6.2	56	21.4	QP	N
1.290000	35.00	6.2	56	21.0	QP	N
1.318000	33.50	6.2	56	22.5	QP	N

MEASUREMENT RESULT: "agc fin2"

2023/1	12/11 14	:58					
Fre	equency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line
0.	.194000	38.50	6.1	54	15.4	AV	N
0.	258000	35.80	6.1	52	15.7	AV	N
0.	322000	32.80	6.1	50	16.9	AV	N
0.	618000	33.70	6.2	46	12.3	AV	N
0.	.682000	32.60	6.2	46	13.4	AV	N
0.	814000	28.90	6.2	46	17.1	AV	N

RESULT: PASS

Page 21 of 45

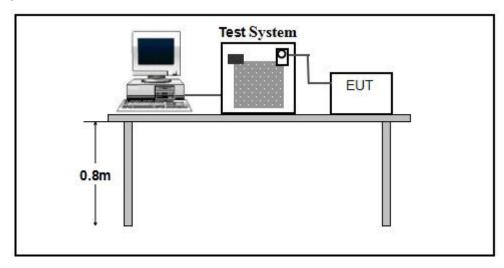
9. HARMONIC CURRENT MEASUREMENT

9.1. LIMITS OF HARMONIC CURRENT

Limits for Class A Equipment						
Harmonics Order n	Max. permissible harmonic current (A)					
Odd harmonics						
3	2.30					
5	1.14					
7	0.77					
9	0.40					
11	0.33					
13	0.21					
15≤n≤39	0.15×15/n					
Even	harmonics					
2	1.08					
4	0.43					
6	0.30					
8≤n≤40	0.23×8/n					

Note: 1. According to section 5 of EN IEC 61000-3-2:2019/A1:2021, the EUT is Class A equipment.

2. The above limits are for all applications having an active input power>75W. No limits apply for equipment with an active input power up to and including 75W.


9.2. TEST PROCEDURE

- 1. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- 2. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the necessary for the EUT to be exercised.

Page 22 of 45

9.3. TEST SETUP

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

9.4. TEST RESULT

Note: Equipment with a rated power less than or equal to 75W is deemed to fulfilled all relevant requirements of this standard without testing.

Page 23 of 45

10. VOLTAGE FLUCTUATIONS AND FLICK MEASUREMENT

10.1. LIMITS OF VOLTAGE FLUCTUATIONS AND FLICK

Test Item Limit		Note	
P _{st} 1.0		P _{st} means Short-term flicker indicator	
P _{lt} 0.65		P _{lt} means long-term flicker indicator	
T _{dt}	0.5	T _{dt} means maximum time that d _t exceeds 3.3%	
d _{max} (%)	4%	d _{max} means maximum relative voltage change.	
d _c (%) 3.3%		d₅ means relative steady-state voltage change.	

10.2. TEST PROCEDURE

- 1. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal conditions
- 2. During the flick measurement, the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

10.3. TEST SETUP

Same as 9.3

10.4. TEST RESULT

Test Specification

Test Frequency	50Hz	Test Voltage	230V AC
Waveform	Sine	Test Time	10 minutes(P _{st}); 2 hours (P _{lt})

Test Result

The worst test mode of the EUT was **Mode 4**, and its test data was showed as the follow:

Test Parameter	Measurement Value	Limit	Remarks
Time(mS) > dt:	0.0	500.0	Pass
Highest dc (%):	0.00	3.30	Pass
Highest dmax (%):	0.00	4.00	Pass
Highest Pst (10 min. period):	0.273	1.000	Pass
Highest Plt (2 hr. period):	0.119	0.650	Pass

Note: operating mode include all modes of EMS in page 9.

Page 24 of 45

11. IMMUNITY TEST

11.1. DESCRIPTION OF PERFORMANCE CRITERIA

The performance criteria are used to take a decision on whether a radio equipment passes or fails immunity tests.

For the purpose of the present document two categories of performance criteria apply:

- Performance criteria for continuous phenomena.
- Performance criteria for transient phenomena.

11.2. GENERAL PERFORMANCE CRITERIA

1. Performance criteria for continuous phenomena

During the test, the equipment shall:

- · continue to operate as intended;
- not unintentionally transmit;
- not unintentionally change its operating state;
- not unintentionally change critical stored data.

2. Performance criteria for transient phenomena

For all ports and transient phenomena with the exception described below, the following applies:

- The application of the transient phenomena shall not result in a change of the mode of operation (e.g. unintended transmission) or the loss of critical stored data.
- After application of the transient phenomena, the equipment shall operate as intended.

For surges applied to symmetrically operated wired network ports intended to be connected directly to outdoor lines the following criteria applies:

- For products with only one symmetrical port intended for connection to outdoor lines, loss of function is allowed, provided the function is self-recoverable, or can be otherwise restored. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.
- For products with more than one symmetrical port intended for connection to outdoor lines, loss of function on the port under test is allowed, provided the function is self-recoverable. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

For a 0 % residual voltage dip tests the following performance criteria apply:

• The performance criteria for transient phenomena shall apply.

For a 70 % residual voltage dip and voltage interruption tests, the following performance criteria apply:

- in the case where the equipment is fitted with or connected to a battery back-up, the performance criteria for transient phenomena shall apply;
- in the case where the equipment is powered solely from the AC mains supply (without the use of a parallel battery back-up) volatile user data may have been lost and if applicable the communication link need not to be maintained and lost functions should be recoverable by user or operator;
- no unintentional responses shall occur at the end of the test, when the voltage is restored to nominal;
- in the event of loss of function(s) or in the event of loss of user stored data, this fact shall be recorded.

Page 25 of 45

3. Performance Table

EN 301 489-3 Performance criteria				
Criteria	During Test	After Test		
А	Operate as intended No loss of function No unintentional responses	Operate as intended No loss of function No degradation of performance No loss of stored data or user programmable functions		
В	May show loss of function No unintentional responses	Operate as intended Lost function(s) shall be self-recoverable No degradation of performance No loss of stored data or user programmable functions		

[•] performance criterion A applies for immunity tests with phenomena of a continuous nature;

Where "operate as intended" or "no loss of function" is specified, the EUT shall demonstrate correct functioning as described in EN 301 489-3 clause 5.

Where the EUT has more than one mode of operation, an unplanned transition from one mode to another is considered as an unintentional response. The EUT shall be tested in sufficient modes to confirm there are no such unintentional responses.

[•] performance criterion B applies for immunity tests with phenomena of a transient nature.

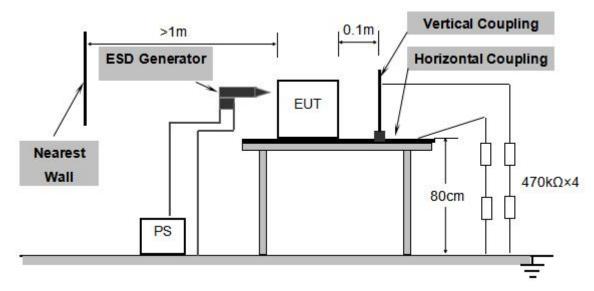
Page 26 of 45

12. ELECTROSTATIC DISCHARGE IMMUNITY TEST

12.1. TEST SPECIFICATION

Basic Standard	EN 61000-4-2		
Discharge Impedance	330Ω/150 pF		
Discharge Voltage	Air Discharge:±8kV, Contact Discharge:±4kV		
Polarity	Positive/Negative		
Number of Discharge	Minimum 25 times at each test point		
Discharge Mode	Single discharge		
Discharge Period	1-second minimum		

12.2. TEST PROCEDURE


The test procedure was in accordance with EN 61000-4-2:

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were completed.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned vertically at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m×0.5m) was placed vertically to and 0.1 meters from the EUT.

Page 27 of 45

12.3. TEST SETUP

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

Page 28 of 45

ESD location:

Blue line: Air discharge

Page 29 of 45

12.4. TEST RESULT

Times of Discharge	Voltage	Coupling	Test Mode	Performance criteria
Mini 25 / Point	±2kV; ±4kV	Contact discharge	N/A	N/A
Mini 25 / Point	±2kV; ±4kV; ±8kV	Air Discharge	Mode 1/2/3/4/5/6/7	А
Mini 25 / Point	±4kV	Indirect Discharge HCP	Mode 1/2/3/4/5/6/7	А
Mini 25 / Point	±4kV	Indirect Discharge VCP	Mode 1/2/3/4/5/6/7	А

A: No degradation in the performance of the EUT was observed.

12.5. PERFORMANCE

⊠ Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.				
☐ Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.				
☐ Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.				
Compliance Alet Compliance					

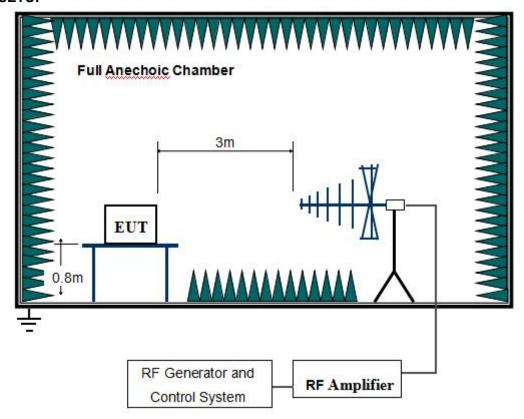
	Compliance	□ Not Compliance	
	Compliance	☐ Not Compliance	

Page 30 of 45

13. RADIATED, RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY TEST

13.1. TEST SPECIFICATION

Basic Standard EN 61000-4-3		
Frequency Range 80MHz-6000MHz		
Field Strength 3V/m		
Modulation	1 kHz sine wave, 80%, AM modulation	
Frequency Step 1% of fundamental		
Polarity of Antenna Horizontal and Vertical		
Test Distance	3m	
Antenna Height	1.55m	
Dwell Time	3 seconds	


13.2. TEST PROCEDURE

The test procedure was in accordance with EN 61000-4-3.

- a. The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b. The test signal was 80% amplitude modulated with a 1 kHz sine wave.
- c. The frequency range was swept from 80 MHz to 6000MHz with the exception of the exclusion band for transmitters, receivers and duplex transceivers. The rate of sweep did not exceed 1.5×10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- d. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- e. The field strength level was 3V/m.
- f. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

13.3. TEST SETUP

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

Page 32 of 45

13.4. TEST RESULT

Freq. Range (MHz)	Field	Modulation	Polarity	Position	Test Mode	Performance criteria
80-6000	3V/m	Yes	Н	Front	Mode 1/2/3/4/5/6/7	А
80-6000	3V/m	Yes	Н	Back	Mode 1/2/3/4/5/6/7	А
80-6000	3V/m	Yes	Н	Left	Mode 1/2/3/4/5/6/7	А
80-6000	3V/m	Yes	Н	Right	Mode 1/2/3/4/5/6/7	А
80-6000	3V/m	Yes	V	Front	Mode 1/2/3/4/5/6/7	А
80-6000	3V/m	Yes	V	Back	Mode 1/2/3/4/5/6/7	А
80-6000	3V/m	Yes	V	Left	Mode 1/2/3/4/5/6/7	А
80-6000	3V/m	Yes	V	Right	Mode 1/2/3/4/5/6/7	А

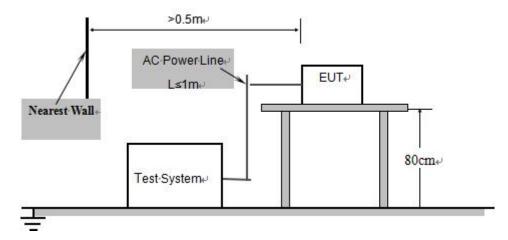
A: No degradation in the performance of the EUT was observed.

13.5. PERFORMANCE

⊠ Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
☐ Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
☐ Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.
⊠ Compliance	☐ Not Compliance

Page 33 of 45

14. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST


14.1. TEST SPECIFICATION

Basic Standard	EN 61000-4-4
Test Voltage	a.c. power port–1kV
Polarity	Positive/Negative
Impulse Frequency	5kHz
Impulse wave shape	5/50ns
Burst Duration	15ms
Burst Period	300ms
Test Duration	Not less than 1min.

14.2. TEST PROCEDURE

- 1. The EUT was tested with 1000 volt discharges to the AC power input leads.
- 2. Both positive and negative polarity discharges were applied.
- 3. The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- 4. The duration time of each test sequential was 1 minute.
- 5. The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

14.3. TEST SETUP

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

Page 34 of 45

14.4. TEST RESULT

Test Point	Polarity	Test Level (kV)	Test Mode	Performance criteria
a.c. port, L	+/-	1	Mode 1/2/3/4	Α
a.c. port, N	+/-	1	Mode 1/2/3/4	Α
a.c. port, L-N	+/-	1	Mode 1/2/3/4	А

A: No degradation in the performance of the EUT was observed.

Note: operating mode include all modes of EMS in page 9.

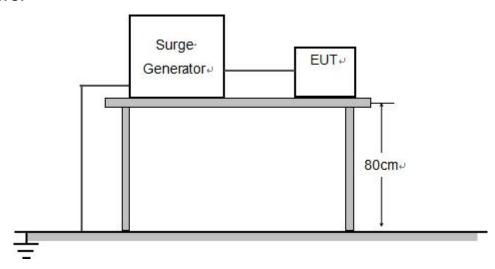
14.5. PERFORMANCE

⊠ Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
☐ Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
☐ Criteria C:	Temporary loss of function is allowed, provided the functions self-recoverable or can be restored by the operation of controls.
	Not Compliance

\boxtimes	Compliance	☐ Not Compliance		

Page 35 of 45

15. SURGE IMMUNITY TEST


15.1. TEST SPECIFICATION

Basic Standard	EN 61000-4-5
Waveform	Voltage 1.2/50μs; Current 8/20μs
Test Voltage	a.c. power port, line to line 1.0kV
Polarity	Positive/Negative
Phase Angle	0°, 90°, 180°, 270°
Repetition Rate	60sec
Times	5 time/each condition.

15.2. TEST PROCEDURE

- a. The EUT and the auxiliary equipment were placed on a table of 0.8m heights above a metal ground reference plane. The size of ground plane is greater than 1m×1m and project beyond the EUT by at least 0.1m on all sides. The ground plane is connected to the protective earth. The length of power cord between the coupling device and the EUT was less than 2 meters (provided by the manufacturer).
- b. The EUT was connected to the power mains through a coupling device that directly couples the surge interference signal. The surge noise was applied synchronized to the voltage phase at the zero crossing and the peak value of the AC voltage wave (positive and negative).
- c. The surges were applied line to line and line(s) to earth. All lower levels including the selected test level were tested. The polarity of each surge level included positive and negative test pulses.

15.3. TEST SETUP

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

Page 36 of 45

15.4. TEST RESULT

Coupling Line	Polarity	Voltage (kV)	Test Mode	Performance criteria
a.c. power, L-N	+/-	1.0	Mode 1/2/3/4	А

A: No degradation in the performance of the EUT was observed.

Note: operating mode include all modes of EMS in page 9.

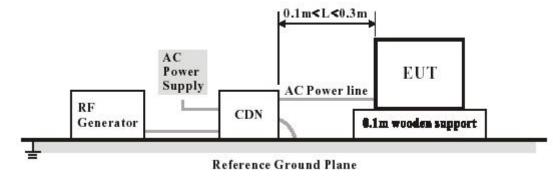
15.5. PERFORMANCE

⊠ Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
☐ Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
☐ Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

Compliance	☐ Not Compliance

Report No.: AGC05443231209ER01 Page 37 of 45

16. IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS


16.1. TEST SPECIFICATION

Basic Standard	EN 61000-4-6
Frequency Range	0.15MHz-80MHz
Field Strength	3Vrms
Modulation	1 kHz Sine Wave, 80% AM
Frequency Step	1% of fundamental
Coupled Cable	a.c. power line
Coupling Device	CDN-M2

16.2. TEST PROCEDURE

- 1. The EUT shall be tested within its intended operating and climatic conditions.
- 2. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.
- 3. The test signal was 80% amplitude modulated with a 1 kHz sine wave
- 4. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80% amplitude. The sweep rate shall not exceed 1.5×10-3 decades/s. The step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value where the frequency is swept incrementally.
- 5. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequencies and harmonics or frequencies of dominant interest, shall be analyzed separately.
- 6. Attempts should be made to fully exercise the EUT during test, and to fully interrogate all exercise modes selected for susceptibility.

16.3. TEST SETUP

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

Page 38 of 45

16.4. TEST RESULT

Test Point	Frequency (MHz)	Level (V rms)	Test Mode	Performance criteria		
a.c. port	0.15 – 80	3	Mode 1/2/3/4	Α		
A. N. da was daking in the professionary of the EUT was absorbed						

A: No degradation in the performance of the EUT was observed.

Note: operating mode include all modes of EMS in page 9.

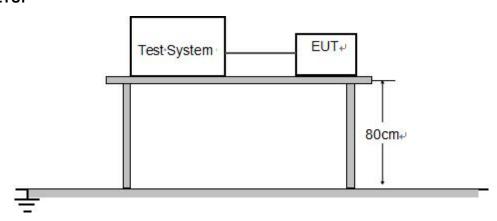
1	6.5.	PE	RF	OR	MA	١N	CE
---	------	----	----	----	----	----	----

⊠ Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
☐ Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
☐ Criteria C:	Temporary loss of function is allowed, provided the functions self-recoverable or can be restored by the operation of controls.
0	Not Ocualizate

\boxtimes	Compliance	☐ Not Compliance		

Page 39 of 45

17. VOLTAGE DIPS AND SHORT INTERRUPTIONS IMMUNITY TEST


17.1. TEST SPECIFICATION

Basic Standard	EN 61000-4-11		
	100% reduction, 0.5 Cycle		
Voltage Dips	100% reduction, 1.0 Cycle		
	30% reduction, 25 Cycles		
Voltage Interruptions	100% reduction, 250 Cycles		
Voltage Phase Angle	0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°		

17.2. TEST PROCEDURE

- a). The power cord was used as supplied by the manufacturer. The EUT was connected to the line output of the Voltage Dips and Interruption Generator.
- b). The EUT was tested for (1) 100% voltage dip of supplied voltage with duration of 0.5 cycles, (2)100% voltage dip of supplied voltage and duration 1.0 cycle. (3) 30% voltage dip of supplied voltage and duration 25 cycles. (4) 100% voltage interruption of supplied voltage with duration of 250 Cycles was followed.
- c). Voltage reductions occur at 0 degree crossover point of the voltage waveform. The performance of the EUT was checked after the voltage dip or interruption.

17.3. TEST SETUP

For the actual test configuration, please refer to Appendix I, Photographs of the Test Configuration.

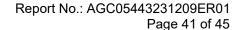
Page 40 of 45

17.4. TEST RESULT

Test Mode	Voltage Reduction	Duration (cycle)	Times	Interval (Sec)	Test Mode	Performance criteria
	100%	0.5	3	10	Mode 1/2/3/4	А
Voltage dips	100%	1	3	10	Mode 1/2/3/4	Α
	30%	25	3	10	Mode 1/2/3/4	А
Voltage interruptions	100%	250	3	10	Mode 1/2/3/4	В

A: No degradation in the performance of the EUT was observed.

B: Stop charging during the test and self-recoverable after test.

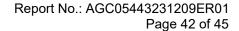

Performance Note: For a 70 % residual voltage dip and voltage interruption tests, the following performance criteria apply: Lost functions can be recoverable by user or operator because the equipment is powered solely from the AC mains supply (without the use of a parallel battery back-up).

Note: operating mode include all modes of EMS in page 9.

17.5. PERFORMANCE

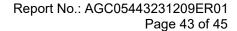
⊠ Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
⊠ Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
☐ Criteria C:	Temporary loss of function is allowed, provided the functions self-recoverable or can be restored by the operation of controls.

	☐ Not Compliance
--	------------------


APPENDIX I: PHOTOGRAPHS OF TEST SETUP

LINE CONDUCTED EMISSION TEST SETUP

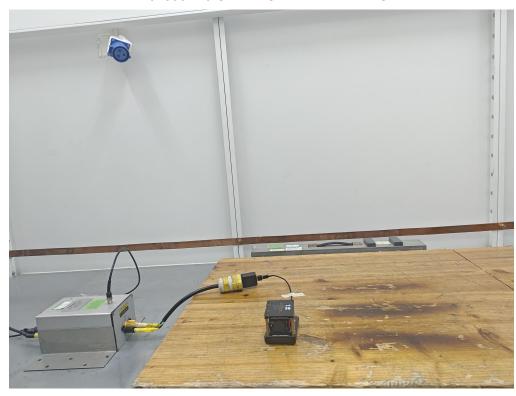
RADIATED EMISSION TEST SETUP (Below 1GHz)



EN61000-3-3 VOLTAGE FLUCTUATION ANDFLICKER TEST SETUP

EN 61000-4-2 ESD TEST SETUP

EN 61000-4-3 RS TEST SETUP (Below 1GHz)


EN 61000-4-4/-5/-11EFT/SURGE/DIPS IMMUNITY TEST SETUP

Page 44 of 45

EN 61000-4-6 CS IMMUNITY TEST SETUP

Page 45 of 45

APPENDIX II: PHOTOGRAPHS OF THE EUT

Refer to the Report No.: AGC05443231209AP01

----END OF REPORT----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.

EMC Test Report

Report No.: AGC05443231209EE01

PRODUCT DESIGNATION: Magnetic wireless charger

BRAND NAME : N/A

MODEL NAME : M06874

APPLICANT: MID OCEAN BRANDS B.V

DATE OF ISSUE : Dec. 14, 2023

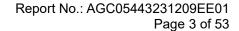
EN 55032:2015+A1:2020

STANDARD(S) : EN 55035:2017+A11:2020

EN IEC 61000-3-2:2019+A1:2021

EN 61000-3-3:2013+A2:2021

REPORT VERSION : V1.0


Attestation of Global Compliance (Shenzhen) Co., Ltd

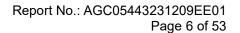
Page 2 of 53

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	Dec. 14, 2023	Valid	Initial release

Table of contents

1. Genera	al information	6
2. Descri	iption of Test Configuration	7
2.1.	Technical Description of Product	7
2.2.	Description of Support Equipment	7
2.3.	Description of Test Modes	8
3. Summ	ary of Measurement Results and Uncertainty	8
3.1.	Test Specifications	8
3.2.	Description of Measurement Results	8
3.3.	Description of Measurement Uncertainty	10
4. Test Fa	acility	11
5. Measu	rement of Conducted Emissions from the AC Mains Power Ports	12
5.1.	Requirements	12
5.2.	Block Diagram of Test Setup	12
5.3.	Equipment Details	13
5.4.	Configuration of the EUT and method of measurement	13
5.5.	Test Summary	14
6. Measu	rement of Radiated Emissions at Frequencies up to 1 GHz	16
6.1.	Requirements	16
6.2.	Block Diagram of Test Setup	16
6.3.	Equipment Details	17
6.4.	Configuration of the EUT and method of measurement	17
6.5.	Test Summary	18
7. Measu	rement of Harmonic Current Emissions	20
7.1.	Requirements	20
7.2.	Block Diagram of Test Setup	21
7.3.	Equipment Details	21
7.4.	Configuration of the EUT and method of measurement	21
7.5.	Test Summary	22
8. Measu	rement of Voltage Fluctuations and Flicker	23
8.1.	Requirements	23
8.2.	Block Diagram of Test Setup	23
8.3.	Equipment Details	23
8.4.	Configuration of the EUT and method of measurement	24



8.8	5. Test Summary	24
9. Meas	surement of Electrostatic discharge	25
9.	1. Requirements	25
9.2	2. Block Diagram of Test Setup	25
9.3	3. Equipment Details	26
9.4	4. Configuration of the EUT and method of measurement	26
9.5	5. Test Summary	27
10. Mea	asurement of Radio-Frequency Electromagnetic Field	28
10	.1. Requirements	28
10	.2. Block Diagram of Test Setup	29
10	.3. Equipment Details	30
10	.4. Configuration of the EUT and method of measurement	30
10	.5. Test Summary	31
11. Mea	asurement of Radio-frequency common mode	32
11	.1. Requirements	32
11	.2. Block Diagram of Test Setup	32
11	.3. Equipment Details	33
11	.4. Configuration of the EUT and method of measurement	33
11	.5. Test Summary	34
12. Mea	asurement of Fast Transients	35
12	2.1. Requirements	35
12	2.2. Block Diagram of Test Setup	35
12	2.3. Equipment Details	36
12	2.4. Configuration of the EUT and method of measurement	36
12	2.5. Test Summary	37
13. Mea	asurement of Surges	38
13	.1. Requirements	38
13	3.2. Block Diagram of Test Setup	39
13	3.3. Equipment Details	39
13	3.4. Configuration of the EUT and method of measurement	40
13	5.5. Test Summary	40
14. Mea	asurement of Voltage dips and interruptions	41
14	.1. Requirements	41
14	.2. Block Diagram of Test Setup	41
14	.3. Equipment Details	42

Report No.: AGC05443231209EE01 Page 5 of 53

14.4. Configuration of the EUT and method of measurement	42
14.5. Test Summary	42
15. Photographs of Test Setup	43
16. Photographs of EUT	47

1. General information

i. General information	•
Applicant	MID OCEAN BRANDS B.V
Address	Unit 201 2/F,. Laford Centre,838 Lai Chi Kok Road, Cheung Sha Wan, Kowloon, Hongkong
Manufacturer	MID OCEAN BRANDS B.V
Address	Unit 201 2/F,. Laford Centre,838 Lai Chi Kok Road, Cheung Sha Wan, Kowloon, Hongkong
Factory	N/A
Address	N/A
Product Designation	Magnetic wireless charger
Brand Name	N/A
Test Model	MO6874
Series Model(s)	N/A
Difference Description	N/A
Deviation from Standard	No any deviation from the test method
Date of receipt of test item	Dec. 08, 2023
Date of Test	Dec. 08, 2023 to Dec. 14, 2023
Test Result	Pass
Test Report Form No	AGCER-EMC-GEN-V1
Note: The test results of the	is report relate only to the tested sample identified in this report.
·	

Prepared By	Thea Yuang	
	Thea Huang (Project Engineer)	Dec. 14, 2023
Reviewed By	Calin Lin	
	Calvin Liu (Reviewer)	Dec. 14, 2023
Approved By	Max Zhang	
	Max Zhang (Authorized Officer)	Dec. 14, 2023

Report No.: AGC05443231209EE01 Page 7 of 53

2. Description of Test Configuration

2.1. Technical Description of Product

Categorization of Equipment	Class B equipment
Test arrangements of EUT	Table-top
Hardware Version	V1.0
Software Version	V1.0
Highest Internal Frequency	Less than 108MHz
Wireless Charging Power	15 W Max.
Power Supply	Type C Input: DC5V 2.4A,9V 2A Type C Output: DC 5V 3A,9V 2.22A,12V 1.66A Wireless Output: DC5V 1A,7.5V 1A,9V 1.12A,9V 1.66A Capacity: 5000mAh/18.5Wh
Adapter Information	N/A
Battery Information	DC 3.7V 5000mAh

Connection Diagram of Host System

I/O Port Information (⊠ Applicable ☐ Not Applicable)

Port Type	Input / Output	Number	Cable Description
Type-C Port	In&Out	1	0.3m unshielded

2.2. Description of Support Equipment

Device Type	Manufacturer	Model Name	Serial No.	Data Cable	specifications
Adapter	jinbaotong	K-T10E0502000E	-		AC100-240V,50-60Hz,0.35A,DC5V/2A
load					2ohm
load					10ohm

Report No.: AGC05443231209EE01 Page 8 of 53

2.3. Description of Test Modes

No.	Test Mode Description	Worst
1	Standby+ Charging mode with adapter(9V/2A)	V
2	Type-C Output 5V/3A	
3	Type-C Output 12V/1.66A	

Note: 1. V means EMI worst mode.

3. Summary of Measurement Results and Uncertainty

3.1. Test Specifications

EN 55032:2015+A1:2020	Electromagnetic compatibility of multimedia equipment - Emission requirements
EN 55035:2017+A11:2020	Electromagnetic compatibility of multimedia equipment - Immunity requirements
EN IEC 61000-3-2:2019+A1:2021	Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current 16 A per phase)
EN 61000-3-3:2013+A2:2021	Electromagnetic compatibility (EMC) Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection

3.2. Description of Measurement Results

Test items	Test Standard(s)	Verdict
Conducted emissions from the AC mains power ports	EN 55032	Pass
Radiated emissions at frequencies up to 1 GHz	EN 55032	Pass
Harmonic current emissions	EN IEC 61000-3-2	Pass
Voltage fluctuations and flicker	EN 61000-3-3	Pass
Electrostatic discharge	IEC 61000-4-2°	Pass
Radio-frequency electromagnetic field	IEC 61000-4-3 a	Pass
Fast transients	IEC 61000-4-4 a	Pass
Surges	IEC 61000-4-5 a	Pass
Radio-frequency common mode (Injected currents)	IEC 61000-4-6 a	Pass
Voltage dips and interruptions	IEC 61000-4-11 a	Pass
Note:		1

Note:

a. The applicable versions of the basic standards are defined in the standard which listed in the test specification.

Page 9 of 53

Performance table

	Performance Criteria for Immunity
Performance criterion A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Performance criterion B	During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Performance criterion C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Page 10 of 53

3.3. Description of Measurement Uncertainty

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%

and of tainty manuphous by a coverage ractor of it 2, providing	a level of confidence of approximately const
Item	Measurement Uncertainty
Conducted emissions from the AC mains power ports	Uc = ±2.9 dB
Radiated emissions at frequencies up to 1 GHz	Uc = ±3.9 dB
Radiated emissions at frequencies above 1 GHz	Uc = ±4.9 dB

Page 11 of 53

4. Test Facility

Laboratory name: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Laboratory Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai

Street, Bao'an District, Shenzhen, Guangdong, China

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. is accredited in accordance with the recognized International Standard ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laborat ories (CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the Electrical field.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842

CAB identifier: CN0063

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

VCCI Membership No.: 4112

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered in accordance with VCCI Council Rules.

VCCI Registration No. C-20098 for conducted emissions at AC main power ports

VCCI Registration No. T-20102 for conducted emissions at telecommunication ports

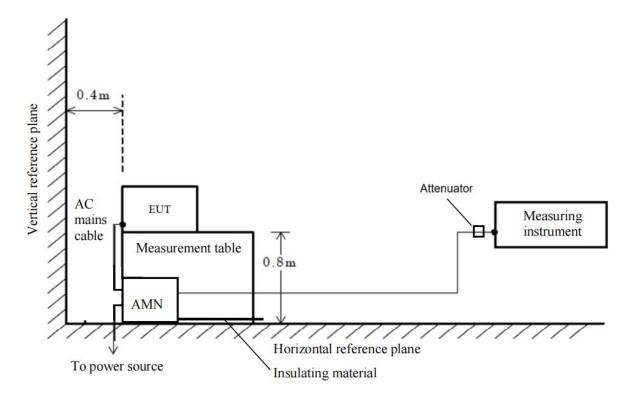
VCCI Registration No. R-20136 for radiated emissions below 1GHz

VCCI Registration No. G-20132 for radiated emissions above 1GHz

Page 12 of 53

5. Measurement of Conducted Emissions from the AC Mains Power Ports

5.1. Requirements


Requirements for conducted emissions, low voltage AC mains port

Network device	Detector type/ bandwidth	Frequency Range (MHz)	Limits dB(µV)	Measurement specifications
		0.15 to 0.5	66 to 56	
	Quasi-peak/ 9kHz	0.5 to 5	56	Instrumentation: CISPR 16-1-1, Clauses 4, 5
ANANI	OKI 12	5 to 30	60	and 7
AMN		0.15 to 0.5	56 to 46	Networks: CISPR 16-1-2, Clause 4
	Average/ 9kHz	0.5 to 5	46	Method: CISPR 16-2-1, Clause 7
	OKI 12	5 to 30	50	Set-up: CISPR 16-2-1, Clause 7

Note:

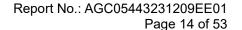
- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.5MHz.

5.2. Block Diagram of Test Setup

Page 13 of 53

5.3. Equipment Details

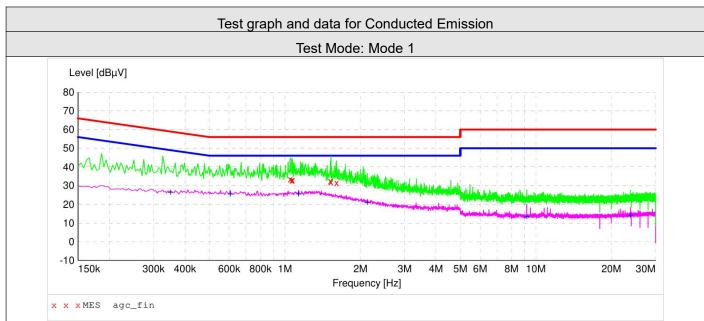
Measuring Instruments

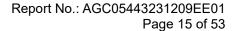

Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Test Receiver	R&S	ESPI	101206	Jun. 03, 2023	Jun. 02, 2024
Artificial Mains Network	R&S	ESH2-Z5	100086	Jun. 03, 2023	Jun. 02, 2024
Attenuator	East sheep	LM-XX-6-5W	N/A	Jun. 09, 2023	Jun. 08, 2024

Measuring Software

Software Name	Manufacturer	Details
ES-K1	R&S	For EMC Measurement, Version 1.71

5.4. Configuration of the EUT and method of measurement


- a. The EUT was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, the EUT was placed on the top surface of a measurement table, 0.8 m high from the horizontal reference plane, and was positioned at a distance of 0.4 m away from the vertical reference plane. When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 10 cm non-conductive covering to insulate the EUT from the ground plane.
- b. Support equipment, if needed, was placed as per CISPR 16-2-1.
- c. All I/O cables were positioned to simulate typical actual usage as per CISPR 16-2-1.
- d. The EMI receiver measured the emission levels emanating from the EUT into the AC Mains through an Artificial Mains Network (AMN) and an attenuator used on the front end of the EMI receiver. Testing included measurements on all live and neutral lines.
- e. The more description of the tests, the test methods, and the test set-ups are given in the applicable test standard.
- f. Record at least six highest emissions relative to the limits at each frequency of interest unless the emission is 10 dB or greater below the limit.
- g. A conducted emission is calculated by the following equation:
 - Measurement Level (dBµV) = Receiver reading (dBµV) + Tansd (dB)
 - Transd(dB)= AMN Factor(dB)+Cable Loss(dB)+Attenuation(dB)
 - Margin= Limit-Level



5.5. Test Summary

Test Engineer	Jimu	Temperature	22.4℃
Test Date	Dec. 11, 2023	Air Pressure	985 Mbar
Worst Mode	Mode 1	Relative Humidity	49.6%
Verdict	Pass		

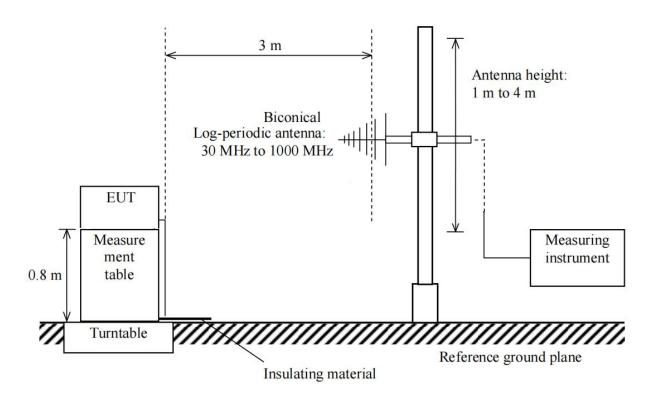
Frequency [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector	Line
1.050000	33.4	6.2	56.0	22.6	QP	L1
1.066000	33.1	6.2	56.0	22.9	QP	L1
1.074000	33.1	6.2	56.0	22.9	QP	L1
1.518000	32.5	6.2	56.0	23.5	QP	L1
1.526000	32.0	6.2	56.0	24.0	QP	L1
1.606000	31.6	6.2	56.0	24.4	QP	L1
0.350000	27.1	6.1	49.0	21.9	AV	L1
0.606000	26.0	6.2	46.0	20.0	AV	L1
1.134000	26.0	6.2	46.0	20.0	AV	L1
2.130000	21.6	6.2	46.0	24.4	AV	L1
9.202000	13.9	6.6	50.0	36.1	AV	L1
23.814000	14.6	7.8	50.0	35.4	AV	L1

Test graph and data for Conducted Emission Test Mode: Mode 1 Level [dBµV] 80 70 60 50 40 30 20 10 150k 300k 400k 600k 800k 1M 2M зм 4M 5M 6M 8M 10M 20M 30M Frequency [Hz] x x x MES agc_fin

Frequency [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector	Line
1.002000	34.7	6.2	56.0	21.3	QP	N
1.122000	34.9	6.2	56.0	21.1	QP	N
1.210000	35.3	6.2	56.0	20.7	QP	N
1.450000	34.4	6.2	56.0	21.6	QP	N
1.502000	34.4	6.2	56.0	21.6	QP	N
1.538000	34.0	6.2	56.0	22.0	QP	N
0.354000	27.0	6.1	48.9	21.9	AV	N
0.530000	26.4	6.2	46.0	19.6	AV	N
1.362000	25.9	6.2	46.0	20.1	AV	N
2.130000	21.8	6.2	46.0	24.2	AV	N
16.014000	15.2	6.9	50.0	34.8	AV	N
25.054000	15.3	8.0	50.0	34.7	AV	N

Page 16 of 53

6. Measurement of Radiated Emissions at Frequencies up to 1 GHz


6.1. Requirements

Requirements for radiated emissions at frequencies up to 1 GHz at 3m distance

Test facility	Detector type/ bandwidth	Frequency Range (MHz)	Limits dB(µV/m)	Measurement specifications
04.0	Quasi-peak/	30 to 230	40	Instrumentation: CISPR 16-1-1, Clauses 4, 5 Antennas: CISPR 16-1-4, Clause 4.5
SAC	SAC Quasi-peak/ 120kHz		47	Test Site: CISPR 16-1-4, Clause 6 Method: CISPR 16-2-3, Clause 7.6

Note:

6.2. Block Diagram of Test Setup

^{1.} The lower limit shall apply at the transition frequency.

Page 17 of 53

6.3. Equipment Details

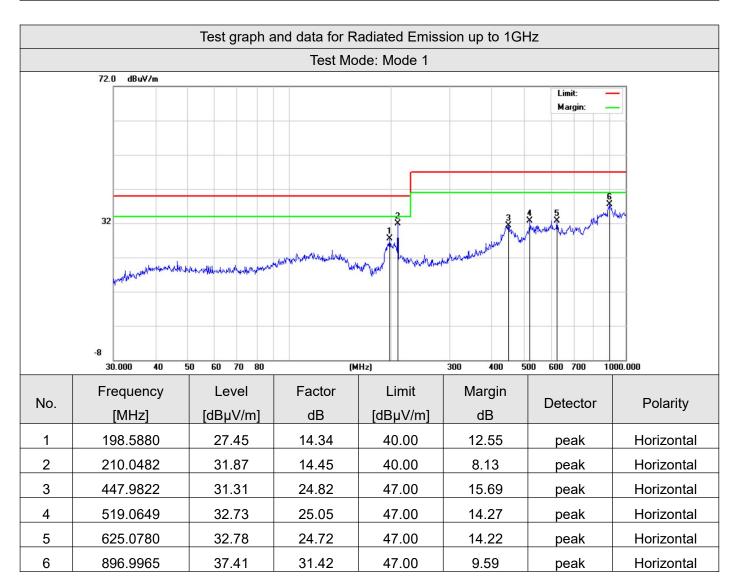
Measuring Instruments

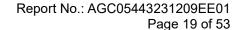
Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Test Receiver	R&S	ESCI	10096	Feb. 18, 2023	Feb. 17, 2024
Antenna	SCHWARZBECK	VULB9168	D69250	May 11, 2023	May 10, 2025
Attenuator	East sheep	LM-XX-6-5W	N/A	Jun. 09, 2023	Jun. 08, 2024

Measuring Software

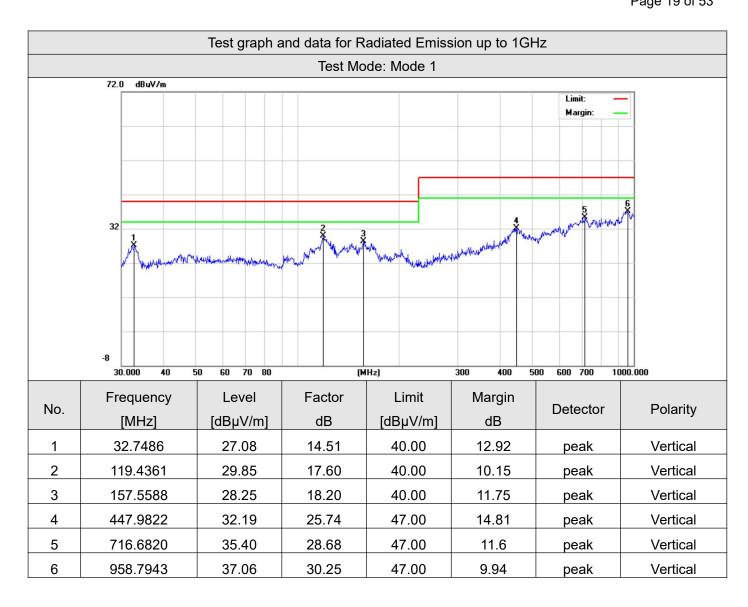
Software Name	Manufacturer	Details
EZ-EMC	FARA	For EMC Measurement, Version RA-03A

6.4. Configuration of the EUT and method of measurement


- a. The EUT was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, the EUT was placed on the top surface of a measurement table, 0.8 m high from the horizontal reference plane. When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 10 cm non-conductive covering to insulate the EUT from the ground plane.
- b. Support equipment, if needed, was placed as per CISPR 16-2-3.
- c. All I/O cables were positioned to simulate typical actual usage as per CISPR 16-2-3.
- d. The maximum receiving level of radiated emissions from the EUT was measured while the turntable was rotated from 0° to 360° and the antenna height was scanned between 1 m and 4 m. The cables were laid out to attain the maximum level of radiated emissions.
- e. The more description of the tests, the test methods, and the test set-ups are given in the applicable test standard.
- f. Record at least six highest emissions relative to the limits at each frequency of interest unless the emission is 10 dB or greater below the limit.
- g. A radiated emission is calculated by the following equation:
 - Measurement Level $dB(\mu V/m) = Receiver reading dB(\mu V) + Factor(dB/m)$
 - Factor(dB/m) = Antenna Factor(dB/m) + Cable Loss(dB)
 - Margin= Limit-Level



Report No.: AGC05443231209EE01 Page 18 of 53


6.5. Test Summary

Test Engineer	Linke	Temperature	23.5℃
Test Date	Dec. 09, 2023	Air Pressure	985 Mbar
Worst Mode	Mode 1	Relative Humidity	59.4%
Verdict	Pass		

Page 20 of 53

7. Measurement of Harmonic Current Emissions

7.1. Requirements

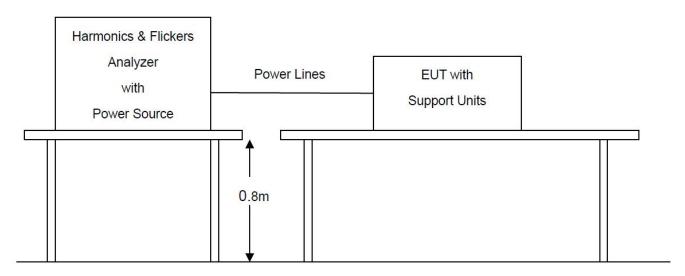
Applicable test standard(s): EN IEC 61000-3-2:2019+A1:2021

Limits of Harmonic Current Emissions

		Limits				
	Class A	Class B	Class C ^a	Clas	ss D	
Harmonic order h		permissible current (A)	Maximum permissible harmonic current expressed as a percentage of the input current at the fundamental frequency (%)	Maximum permissible harmonic current per watt (mA/W)	Maximum permissible harmonic current (A)	
3	2.30	3.45	27 ^b	3.4	2.30	
5	1.14	1.71	10	1.9	1.14	
7	0.77	1.155	7	1.0	0.77	
9	0.40	0.6	5	0.5	0.40	
11	0.33	0.495	3	0.35	0.33	
13	0.21	0.315	3	3.85/13	0.21	
15≤ <i>h</i> ≤39(odd harmonics only)	2.25/h	3.375/h	3	3.85/h	2.25/h	
2	1.08	1.62	2			
4	0.43	0.645				
6	0.30	0.45	Not applicable	Not applicable N	Not applicable	
8≤h≤40(even harmonics only)	1.84/h	2.76/h				

Note

The application of limits had been as defined in the applicable test standard.


⁽a) For some Class C products, other emission limits apply.

⁽b) The limit is determined based on the assumption of modern lighting technologies having power factors of 0.90 or higher

Page 21 of 53

7.2. Block Diagram of Test Setup

7.3. Equipment Details

Measuring Instruments

Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Signal Conditioning Unit	Schaffner	CCN1000-1	72431	Jun. 02, 2023	Jun. 01, 2024
AC Source	Schaffner	NSG 1007	56825	Jun. 02, 2023	Jun. 01, 2024

Measuring Software

Software Name	Manufacturer	Details
CTS 4	AMETEK	For harmonics and flickers measurement, version 4.29.0

7.4. Configuration of the EUT and method of measurement

- The test shall be conducted according to the general requirements given in the applicable test standard.
 The test duration had been as defined in the applicable test standard.
- b. The measurement of harmonic currents shall be performed as follows:
 - for each harmonic order, measure the 1.5 s smoothed RMS harmonic current in each discrete Fourier transform (DFT) time window;
 - calculate the arithmetic average of the measured values from the DFT time windows, over the entire observation period.
- c. The value of the active input power to be used for the calculation of limits shall be determined as follows:
 - measure the 1.5 s smoothed active input power in each DFT time window;
 - determine the maximum of the measured values of active power from the DFT time windows over the entire duration of the test.

Report No.: AGC05443231209EE01 Page 22 of 53

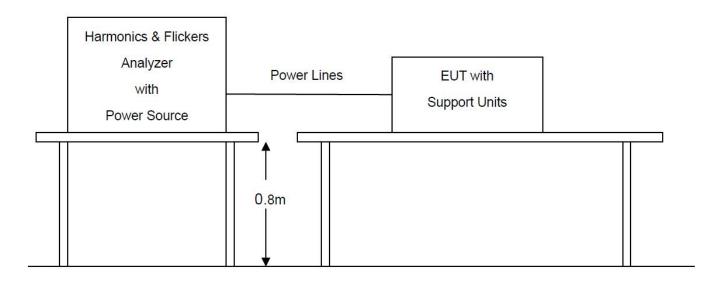
d. The harmonic currents and the active input power shall be measured under the same test conditions but need not be measured simultaneously.

7.5. Test Summary

Equipment with a rated power less than or equal to 75W is deemed to fulfil all relevant requirements of this standard without testing.

Page 23 of 53

8. Measurement of Voltage Fluctuations and Flicker


8.1. Requirements

Applicable test standard(s): EN 61000-3-3:2013+A2:2021

Limits of Voltage Fluctuations and Flicker

Parameters	Definitions	Limits
T _{max}	the accumulated time value of $d(t)$ with a deviation exceeding 3.3 % during a single voltage change at the EUT terminals	≤500 ms
d _c	the maximum relative steady-state voltage change	≤3.3%
d _{max}	the maximum relative voltage change	⊠ ≤4% □ ≤6% □ ≤7%
⊠ P _{st}	short-term flicker severity	≤0.65
$\Box P_{lt}$	long-term flicker severity	≤1.0

8.2. Block Diagram of Test Setup

8.3. Equipment Details

Measuring Instruments

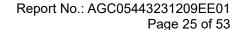
Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Signal Conditioning Unit	Schaffner	CCN1000-1	72431	Jun. 02, 2023	Jun. 01, 2024
AC Source	Schaffner	NSG 1007	56825	Jun. 02, 2023	Jun. 01, 2024

Measuring Software

Software Name	Manufacturer	Details
CTS 4	AMETEK	For harmonics and flickers measurement, version 4.29.0

Report No.: AGC05443231209EE01 Page 24 of 53

8.4. Configuration of the EUT and method of measurement

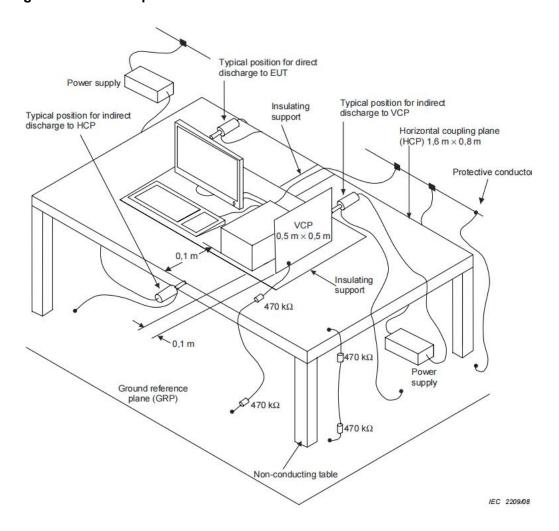

- a. The test shall be conducted according to the general requirements given in the applicable test standard.

 The test duration and test condition had been as defined in the applicable test standard.
- b. All types of voltage fluctuations would been assessed by direct measurement using a flicker meter which complies with the specification given in IEC 61000-4-15:2010.

8.5. Test Summary

Test Engineer	Jimu	Temperature	22.4℃
Test Date	Dec. 11, 2023	Air Pressure	985 Mbar
Worst Mode	Mode 1	Relative Humidity	49.6%
Verdict	Pass		

Parameters	Measurement Value	Limits
T _{max}	0	≤500 ms
d _c	0.45	≤3.3%
d _{max}	1.48	≤4%
P _{st}	0.127	≤0.65



9. Measurement of Electrostatic discharge

9.1. Requirements

Port	Enclosure
Basic Standard	IEC 61000-4-2
Test Level	±8.0 kV (Air Discharge) ±4.0 kV (Contact Discharge)
	±4.0 kV (Indirect Discharge)
Required Performance Criterion	В
Time Between Each Discharge:	1 second
Number of Discharge for Each Applied Voltage	10

9.2. Block Diagram of Test Setup

Page 26 of 53

9.3. Equipment Details

Measuring Instruments

Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
ESD Simulator	Schaffner	NSG 438	782	Dec. 30, 2022	Dec. 29, 2023

Measuring Software

Software Name	Manufacturer	Details

9.4. Configuration of the EUT and method of measurement

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were completed.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned vertically at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m×0.5m) was placed vertically to and 0.1 meters from the EUT.
- i. The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance criterion defined in the report.

Page 27 of 53

9.5. Test Summary

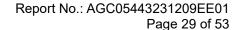
Test Engineer	Sam	Temperature	23.0℃
Test Date	Dec. 11, 2023	Air Pressure	985 Mbar
Test Mode(s)	Mode 1-3	Relative Humidity	52.0%
Verdict	Pass		

Voltage	Coupling	Observation	Performance
±4kV	Contact Discharge	N/A	N/A
±2KV, ±4kV, ±8kV	Air Discharge	No degradation of performance	A
±4kV	Indirect Discharge HCP	No degradation of performance	А
±4kV	Indirect Discharge VCP	No degradation of performance	Α

ESD location:

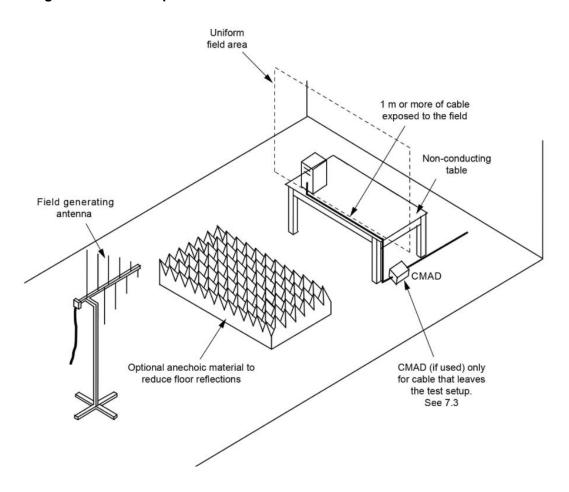
Blue line: Air discharge

Page 28 of 53


10. Measurement of Radio-Frequency Electromagnetic Field

10.1. Requirements

Port	Enclosure
Basic Standard	IEC 61000-4-3
Test Level	Swept test: 3V/m with 80% AM. 1kHz Modulation at 80 to 1000MHz Spot test (Frequency (±1 %)): 3V/m with 80% AM. 1kHz Modulation at 1800, 2600, 3500, 5000MHz
Required Performance Criterion	A
Antenna polarization	Vertical and Horizontal
Step size increment ^a	1%
Dwell time ^b	≤5 seconds
Test Distance	3m
EUT position facing antenna	Front side, back side, left side and right side


Notes:

- a. Recognizing that a 1% step size is preferred, the frequency range can be swept incrementally with a step size not exceeding 4% of the previous frequency with a test level of twice the value of the specified test level in order to reduce the testing time for equipment requiring testing in multiple configurations and/or long cycle times.
- b. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time shall not exceed 5 seconds at each of the frequencies during the scan. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

10.2. Block Diagram of Test Setup

Page 30 of 53

10.3. Equipment Details

Measuring Instruments

Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Signal Generator	Aglient	E4421B	MY43351603	Feb. 17, 2023	Feb. 16, 2024
Power Probe	R&S	URV5-Z4	100124	Mar. 24, 2023	Mar. 23, 2025
Power Meter	R&S	NRVD	8323781027	Mar. 24, 2023	Mar. 23, 2025
Power Amplifier	KALMUS	7100LC	04-02/17-06-001	Apr. 25, 2023	Apr. 24, 2024
Power Amplifier	Milmega	AS0104-55_55	1004793	Apr. 25, 2023	Apr. 24, 2024
Power Amplifier	Rflight	NTWPA-2560100	17063183	Apr. 25, 2023	Apr. 24, 2024
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00034609	Mar. 23, 2023	Mar. 22, 2024
Wideband Antenna	SCHWARZBECK	VULB9168	D69250	May. 10, 2023	May. 09, 2025

Measuring Software

Software Name	Manufacturer	Details
TS+[JS35-RS]	Tonscend	For EMC measurement, version 2.0.1.8

10.4. Configuration of the EUT and method of measurement

- a. The Equipment Under Test (EUT) was positioned within the Uniform Field Area (UFA) on a supporting table, ensuring a 3-meter separation from the transmitting antenna. This setup aligns with the calibrated square area, guaranteeing field uniformity during testing. The supporting units were strategically located outside the UFA to avoid any potential interference. Nonetheless, the cables connected to the EUT were intentionally exposed to the precisely calibrated field within the UFA.
- b. Before testing, it will verify the proper operation of the test equipment/system. This verification will involve measuring the field strength at one point within the Uniform Field Area (UFA) at various frequencies.
- c. The test shall be performed according to the above requirements and block diagram which shall specify the test setup.
- d. The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance criterion defined in the report.

Page 31 of 53

10.5. Test Summary

Test Engineer	Linke	Temperature	23.8℃
Test Date	Dec. 09, 2023	Air Pressure	985 Mbar
Test Mode(s)	Mode 1-3	Relative Humidity	60.7%
Verdict	Pass		

Swept test:

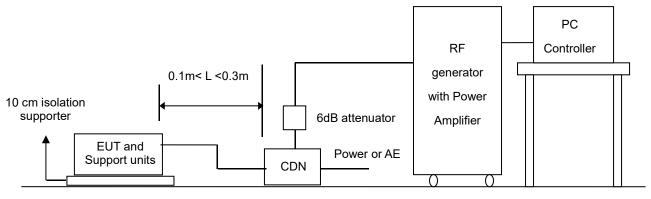
Frequency	Exposed Side	Field Strength (V/m)	Observation	Performance
80MHz to 6GHz	Front	3V/m (rms)	No degradation of performance	Α
80MHz to 6GHz	Left	3V/m (rms)	No degradation of performance	A
80MHz to 6GHz	Rear	3V/m (rms)	No degradation of performance	A
80MHz to 6GHz	Right	3V/m (rms)	No degradation of performance	Α

Spot test (Frequency (±1 %)):

Frequency	Exposed	Field Strength	Observation	Performance
	Side	(V/m)		
1800, 2600, 3500, 5000MHz	Front	3V/m (rms)	No degradation of performance	Α
1800, 2600, 3500, 5000MHz	Left	3V/m (rms)	No degradation of performance	Α
1800, 2600, 3500, 5000MHz	Rear	3V/m (rms)	No degradation of performance	Α
1800, 2600, 3500, 5000MHz	Right	3V/m (rms)	No degradation of performance	Α

Page 32 of 53

11. Measurement of Radio-frequency common mode


11.1. Requirements

Port	⊠AC mains power ports	☐ Analogue/digital data ports ^a	DC ports ^a	network	power
Basic Standard	IEC 61000-4-6				
Required Performance Criterion	А				
Test Level	0.15 to 10 MHz, 3 V RMS (unmodulated), 80 % AM (1 kHz) 10 to 30 MHz, 3 to 1 V RMS (unmodulated), 80 % AM (1 kHz) 30 to 80 MHz, 1 V RMS (unmodulated), 80 % AM (1 kHz)				
Step size increment b	1%				
Dwell time ^c	≤5 seconds				

Notes:

- Applicable only to ports which, according to the manufacturer's specification, supports cable lengths greater than 3 m.
- b. Recognizing that a 1% step size is preferred, the frequency range can be swept incrementally with a step size not exceeding 4% of the previous frequency with a test level of twice the value of the specified test level in order to reduce the testing time for equipment requiring testing in multiple configurations and/or long cycle times.
- c. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time shall not exceed 5 seconds at each of the frequencies during the scan. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

11.2. Block Diagram of Test Setup

Ground Reference Plane

Page 33 of 53

11.3. Equipment Details

Measuring Instruments

Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Power Amplifier	AR	75A250	18464	Oct. 13, 2023	Oct. 12, 2024
CDN	ZHINAN	ZN3751	15004	Aug. 03, 2022	Sep. 02, 2024
6dB attenuator	ZHINAN	E-002	N/A	Aug. 04, 2022	Aug. 03, 2024
Power Probe	R&S	URV5-Z4	100124	Mar. 24, 2023	Mar. 23, 2025
Directional Coupler	Werlatone	C5571-10	99463	Mar. 10, 2023	Mar. 09, 2024
Electromagnetic Injection Clamp	Luthi	EM101	35773	Aug. 12, 2022	Aug. 11, 2024
Power Meter	R&S	NRVD	8323781027	Mar. 24, 2023	Mar. 23, 2025
Signal Generator	Keysight	E4421B	MY43351603	Feb. 17, 2023	Feb. 16, 2024

Measuring Software

Software Name	Manufacturer	Details
TS+[JS35-CS]	Tonscend	For EMC measurement, version 2.0.1.7

11.4. Configuration of the EUT and method of measurement

- a. The Equipment Under Test (EUT) shall be tested within its intended operating and climatic conditions.
- b. The test generator and the coupling/decoupling network shall be placed directly on, and bonded to, the ground reference plane. The test shall be performed with the test generator connected to each of the coupling devices (CDN, EM clamp, current clamp) in turn. All other cables not under test shall either be disconnected (when functionally allowed) or provided with decoupling networks or unterminated CDNs only.
- The test shall be performed according to the above requirements and block diagram which shall specify
 the test setup.
- d. The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance criterion defined in the report.

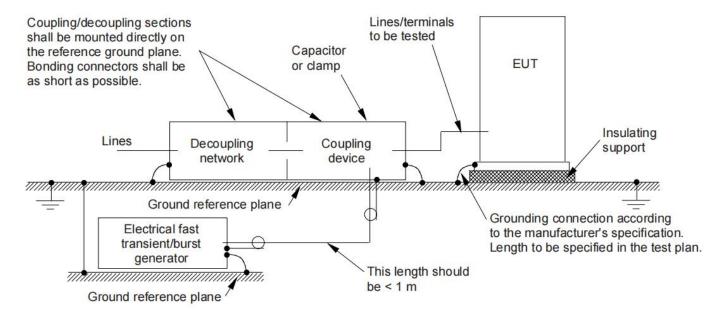
Page 34 of 53

11.5. Test Summary

Test Engineer	Sam	Temperature	23.0℃
Test Date	Dec. 12, 2023	Air Pressure	985 Mbar
Test Mode(s)	Mode 1	Relative Humidity	52.0%
Verdict	Pass		

Test port	Test Level	Coupling method	Observation	Performance
AC Mains	0.15 to 10 MHz: 3 V			
Input	10 to 30 MHz: 3 to 1 V	CDN	No degradation of performance	A
pat	30 to 80 MHz, 1 V			

Page 35 of 53


12. Measurement of Fast Transients

12.1. Requirements

Port	⊠AC mains power ports	☐ Analogue/digital data ports ^a	DC network power ports ^a	
Basic Standard	IEC 61000-4-4			
Required Performance Criterion	В			
Test Level	1 kV (peak)	0.5 kV (peak)	0.5 kV (peak)	
Polarity	Positive/Negative			
Impulse Frequency	5kHz			
Impulse wave shape	5/50ns			
Burst Duration	15ms			
Burst Period	300ms			
Notes:		manufacturar's anacification		

a. Applicable only to ports which, according to the manufacturer's specification, supports cable lengths greater than 3 m.

12.2. Block Diagram of Test Setup

Page 36 of 53

12.3. Equipment Details

Measuring Instruments

Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
EFT/Surge/DIPS	Schaffner	Modula 6150	34437	Jun. 08, 2023	Jun. 07, 2024
Generator	Ochanno	Wodula 0130	34437	Juli. 00, 2025	Juli. 07 , 2024

Measuring Software

Software Name	Manufacturer	Details
WinModula	Schaffner	For EFT/Surge/Dips measurement, version 2.31 c

12.4. Configuration of the EUT and method of measurement

- a. The Equipment Under Test (EUT), whether stationary floor-mounted or table top, and equipment designed to be mounted in other configurations, shall be placed on a ground reference plane and shall be insulated from it by an insulating support 0,1 m ± 0,01 m thick.
- b. The test generator and the coupling/decoupling network shall be placed directly on, and bonded to, the ground reference plane.
- c. The EUT shall be arranged and connected to satisfy its functional requirements, according to the equipment installation specifications. The minimum distance between the EUT and all other conductive structures (e.g. the walls of a shielded room), except the ground reference plane shall be more than 0,5 m. All cables to the EUT shall be placed on the insulation support 0,1 m above the ground reference plane. Cables not subject to electrical fast transients shall be routed as far as possible from the cable under test to minimize the coupling between the cables.
- d. The test voltages shall be coupled to all of the EUT ports including those between two units of equipment involved in the test, unless the length of the interconnecting cable makes it impossible to test.
- e. Either a direct coupling network or a capacitive clamp shall be used for the application of the test voltages.
- f. The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance criterion defined in the report.

Page 37 of 53

12.5. Test Summary

Test Engineer	Sam	Temperature	23.0℃
Test Date	Dec. 12, 2023	Air Pressure	985 Mbar
Test Mode(s)	Mode 1	Relative Humidity	55.0%
Verdict	Pass		

Inject Line	Voltage(kV)	Inject Method	Observation	Performance
AC Lines	0.5, 1	Direct	No degradation of performance	Α

Report No.: AGC05443231209EE01 Page 38 of 53

13. Measurement of Surges

13.1. Requirements

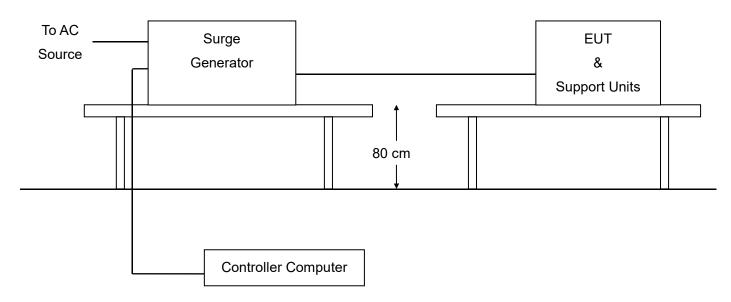
Port	⊠ AC mains power ports ^a	☐ Analogue/digital d☐ Unshielded symmetrical	ata ports ^{b, c, d and e} ☐ Coaxial or shielded	☐ DC network power ports ^f
Basic Standard	IEC 61000-4-5			
Required Performance Criterion	В	С	В	В
Test Level	Line to line: 1 kV; Line to ground: 2 kV	primary protection is intended: 1 and 4 kV (line to ground); primary protection is not intended: 1 kV (line to ground)	shield to ground: 0.5 kV	Line to ground: 0.5 kV
Tr/Th	1.2/50 (8/20) µs	10/700 (5/320) μs	1.2/50 (8/20) µs	1.2/50 (8/20) µs
Number of impulses	Five positive and fi	ve negative impulses		
Time between successive impulses	1 min			

Notes:

- a. The number of pulses applied shall be as follows:
 - Five positive pulses line-to-neutral at 90° phase.
 - Five negative pulses line-to-neutral at 270° phase.

The following additional pulses are required only if the EUT has an earth connection or if the EUT is earthed via any AE:

- Five positive pulses line-to-earth at 90° phase.
- Five negative pulses line-to-earth at 270° phase.
- Five negative pulses neutral-to-earth at 90° phase.
- Five positive pulses neutral-to-earth at 270° phase.
- b. Applicable only to ports which, according to the manufacturer's specification, supports cable lengths greater than 3 m.
- c. Surges are applied with primary protection fitted. Where possible, use the actual primary protector intended to be used in the installation.
- d. Where the surge coupling network for the 10/700 (5/320) µs waveform affects the functioning of high speed data ports, the test shall be carried out using a 1.2/50 (8/20) µs waveform and appropriate coupling network.
- e. Surges are applicable to ports which satisfy all of the following conditions:
 - May connect directly to cables that leave the building structure.
 - Defined as an antenna port, a wired network port, or a broadcast receiver tuner port.


Typical ports covered include xDSL, PSTN, CATV, antenna and similar. Excluded ports are LAN and similar.

f. Applicable only to ports which, according to the manufacturer's specification, may connect directly to outdoor cables.

Page 39 of 53

13.2. Block Diagram of Test Setup

13.3. Equipment Details

Measuring Instruments

Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
EFT/Surge/DIPS Generator	Schaffner	Modula 6150	34437	Jun. 08, 2023	Jun. 07, 2024

Measuring Software

Software Name	Manufacturer	Details
WinModula	Schaffner	For EFT/Surge/Dips measurement, version 2.31 c

Page 40 of 53

13.4. Configuration of the EUT and method of measurement

- a. Verification shall be performed. It is preferable to perform the verification prior to the test.
- b. The test shall be performed according to the above requirements and block diagram which shall specify the test setup.
- c. When testing line-to-ground, the lines are tested individually in sequence, if there is no other specification.
- d. The test procedure shall also consider the non-linear current-voltage characteristics of the equipment under test. Therefore, all lower test levels including the selected test level shall be tested.
- The test results shall be classified in terms of the loss of function or degradation of performance of the
 equipment under test, relative to a performance criterion defined in the report.

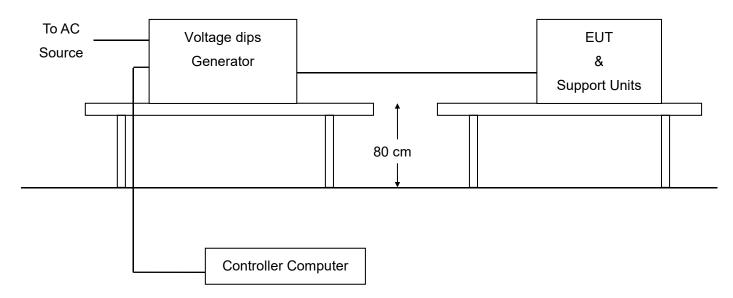
13.5. Test Summary

Test Engineer	Sam	Temperature	23.0℃
Test Date	Dec. 12, 2023	Air Pressure	985 Mbar
Test Mode(s)	Mode 1	Relative Humidity	55.0%
Verdict	Pass		

Test port	Coupling	Voltage(kV)	Observation	Performance
	line-to-neutral	0.5, 1	No degradation of performance	Α
AC Mains Input	line-to-earth	0.5, 1, 2	No degradation of performance	А
put	neutral-to-earth	0.5, 1, 2	No degradation of performance	А

Page 41 of 53

14. Measurement of Voltage dips and interruptions


14.1. Requirements

Port	AC mains power ports			
Basic Standard	IEC 61000-4-11			
Required Performance Criterion	В	В	С	
Residual voltage ^a	< 5 %	70 %	< 5 %	
Number of cycles ^b	0.5	25 for 50 Hz 30 for 60 Hz	250 for 50 Hz 300 for 60 Hz	
Variation/dip repetition	Sequence of three dips/ii test	nterruptions with an interva	al of 10 seconds between each	

Notes:

- a. Changes to occur at 0 degree crossover point of the voltage waveform. If the EUT does not demonstrate compliance when tested with 0 degree switching, the test shall be repeated with the switching occurring at both 90 degrees and 270 degrees. If the EUT satisfies these alternative requirements, then it fulfils the requirements.
- b. Apply at only one supply frequency of the EUT.

14.2. Block Diagram of Test Setup

Page 42 of 53

14.3. Equipment Details

Measuring Instruments

Instruments	Manufacturer	Model	S/N	Cal. Date	Cal. Due
EFT/Surge/DIPS Generator	Schaffner	Modula 6150	34437	Jun. 08, 2023	Jun. 07, 2024

Measuring Software

Software Name	Manufacturer	Details
WinModula	Schaffner	For EFT/Surge/Dips measurement, version 2.31 c

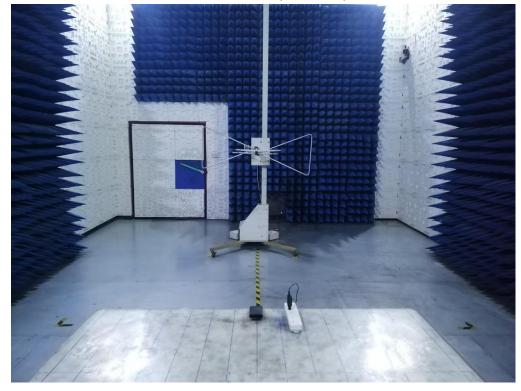
14.4. Configuration of the EUT and method of measurement

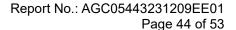
- a. The test shall be performed according to the above requirements and block diagram which shall specify the test setup.
- b. The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance criterion defined in the report.

14.5. Test Summary

Test Engineer	Sam	Temperature	23.0℃
Test Date	Dec. 12, 2023	Air Pressure	985 Mbar
Test Mode(s)	Mode 1	Relative Humidity	55.0%
Verdict	Pass		

Test port	Residual voltage (%)	Cycles	Observation	Performance
AC Mains Input	< 5	0.5	No degradation of performance	Α
	70	25	No degradation of performance	Α
	< 5	250	EUT power cycled	В

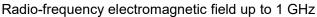


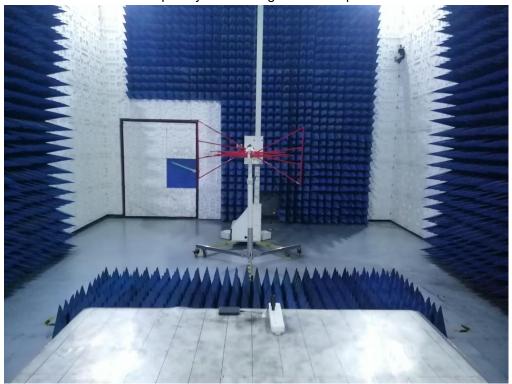

15. Photographs of Test Setup

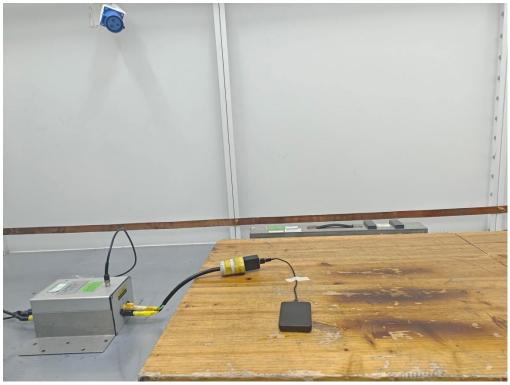
Conducted emissions from the AC mains power ports

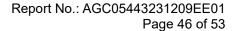
Radiated emissions at frequencies up to 1 GHz

Harmonic current emissions & Voltage fluctuations and flicker



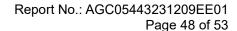

Electrostatic discharge





Radio-frequency common mode at the AC mains power ports

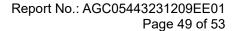
Fast transients/Surges/ Voltage dips at the AC mains power ports


16. Photographs of EUT

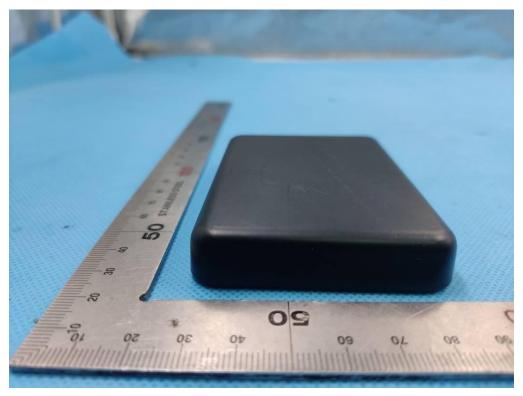
ALL VIEW OF EUT-1

ALL VIEW OF EUT-2

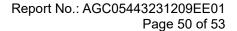
TOP VIEW OF EUT



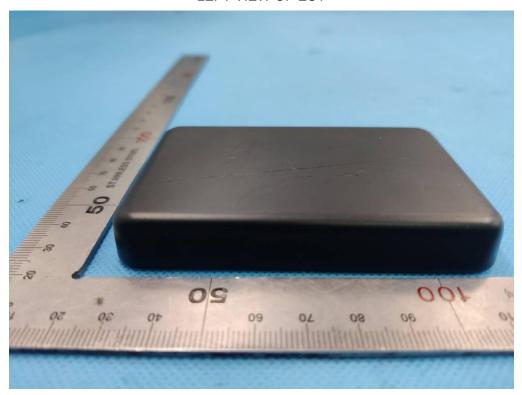
BOTTOM VIEW OF EUT

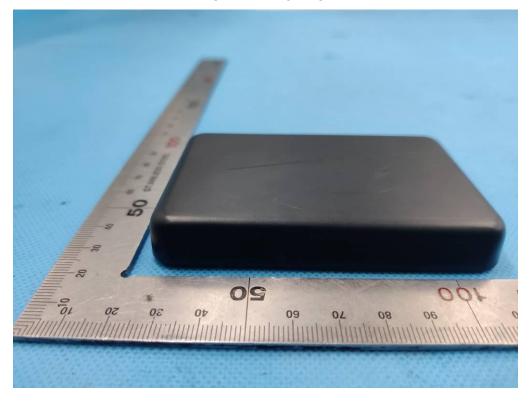

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

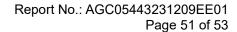
Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/



FRONT VIEW OF EUT

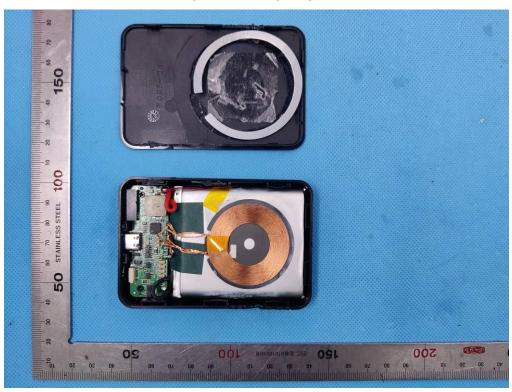

BACK VIEW OF EUT



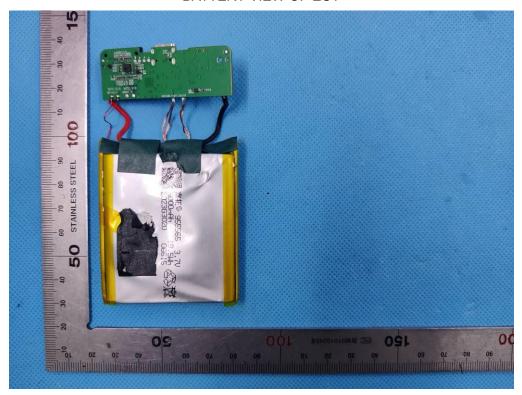


LEFT VIEW OF EUT

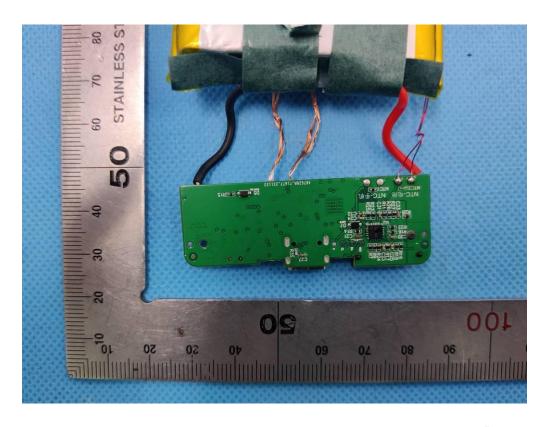
RIGHT VIEW OF EUT



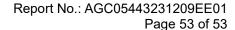
VIEW OF EUT(PORT)



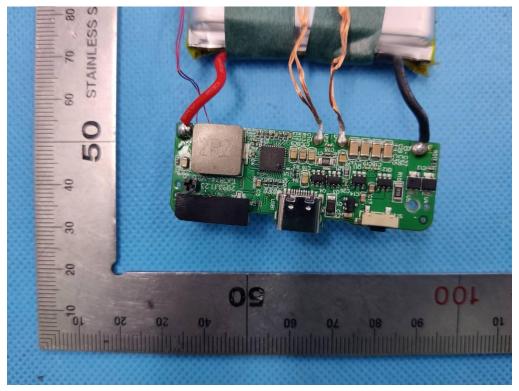
OPEN VIEW OF EUT



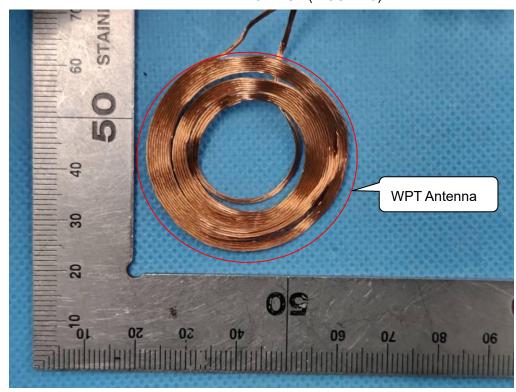
BATTERY VIEW OF EUT



INTERNAL VIEW OF EUT (FIGURE 1)


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/



INTERNAL VIEW OF EUT (FIGURE 2)

INTERNAL VIEW OF EUT (FIGURE 3)

----End of Report----

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.