

Radio Test Report

Report No.: AGC12440250101ER02

PRODUCT DESIGNATION: WIRELESS SPEAKER

BRAND NAME : N/A

MODEL NAME : M06819, M06818

APPLICANT: MID OCEAN BRANDS B.V.

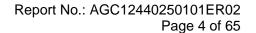
DATE OF ISSUE : Feb. 24, 2025

STANDARD(S) : ETSI EN 300 328 V2.2.2 (2019-07)

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

Page 2 of 65


Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Feb. 24, 2025	Valid	Initial Release

Table of Contents

1. General Information	4
2. Product Information	5
2.1 Product Technical Description	5
2.2 Test Frequency List	6
2.3 Objective	7
2.4 Test Items and The Results	7
2.5 Description of Test Modes	8
3. Setup of Equipment Under Test	9
3.1 Setup Configuration of EUT	g
3.2 Support Equipment	9
4. Test Environment	10
4.1 Address of The Test Laboratory	1C
4.2 Test Facility	10
4.3 Environmental Conditions	11
4.4 Measurement Uncertainty	11
4.5 List of Equipment Used	12
5. ETSI EN 300 328 Requirements for Transmitter	14
5.1 RF Output Power	14
5.2 Accumulated Transmit Time, Frequency Occupiation and Hopping Sequence	19
5.3 Hopping Frequency Separation	27
5.4 Occupied Channel Bandwidth	30
5.5 Adaptivity (Adaptive Frequency Hopping)	35
5.6 Transmitter Unwanted Emissions in the Out-of-Band Domain	37
5.7 Transmitter Unwanted Emissions in the Spurious Domain	41
6. ETSI EN 300 328 Requirements for Receiver	50
6.1 Receiver Unwanted Emissions in the Spurious Domain	50
6.2 Receiver Blocking	59
Appendix I: Photographs of Test Setup	63
Appendix II: Photographs of Test EUT	65

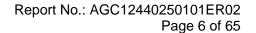
1. General Information

Applicant	MID OCEAN BRANDS B.V.
Address	7/F., King Tower, 111King Lam Street, Cheung ShaWan, Kowloon, Hong Kong.
Manufacturer	MID OCEAN BRANDS B.V.
Address	7/F., King Tower, 111King Lam Street, Cheung ShaWan, Kowloon, Hong Kong.
Factory	MID OCEAN BRANDS B.V.
Address	7/F., King Tower, 111King Lam Street, Cheung ShaWan, Kowloon, Hong Kong.
Product Designation	WIRELESS SPEAKER
Brand Name	N/A
Test Model	MO6819
Series Model(s)	MO6818
Difference Description	All are the same except for the appearance material
Date of receipt of test item	Jan. 17, 2025
Date of Test	Jan. 17, 2025~Feb. 24, 2025
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-EU-BR_EDR-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By	Thea Yuang	
	Thea Huang (Project Engineer)	Feb. 24, 2025
Reviewed By	Calin Lin	
	Calvin Liu (Reviewer)	Feb. 24, 2025
Approved By	Angole li	
	Angela Li (Authorized Officer)	Feb. 24, 2025

Page 5 of 65


2. Product Information

2.1 Product Technical Description

Equipment Type	FHSS adaptive equipment		
Supported Technologies	Classic Bluetooth		
Operation Frequency Range	2.4G ISM band (2402MHz-2480MHz)		
Bluetooth Version	V5.3		
Hardware Version	V2.0		
Software Version	ac696n_soundbox_sdk_v1.6.0		
Modulation Type	⊠BR: GFSK ⊠EDR: π /4-DQPSK ⊠EDR: 8DPSK		
Data Rate	⊠1Mbps ⊠2Mbps ⊠3Mbps		
Number of Channels	79 of Hopping Channels		
Maximum RF Output Power	-3.98dBm (E.I.R.P.)		
Antonno Designation			
Antenna Designation	☐Dedicated Antenna		
Antenna Gain	1.2dBi		
Receiver Category	□Category 1 □Category 2 ⊠Category 3		
Power Supply	DC 3.7V, 300mAh by battery		
Geo-location capability	□Yes ⊠No		
	Lowest temperature range (LT): 0°C		
Extreme Operating Conditions	Normal temperature range (NT): 25°C		
	Highest temperature range (HT): 40°C		

Note:

- 1. The above information was declared by the manufacturer.
- 2. The equipment submitted are representative production models.
- 3. For more details, please refer to the User's manual of the EUT.

2.2 Test Frequency List

Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2402	42	2443
02	2403	43	2444
03	2404	44	2445
04	2405	45	2446
05	2406	46	2447
06	2407	47	2448
07	2408	48	2449
08	2409	49	2450
09	2410	50	2451
10	2411	51	2452
11	2412	52	2453
12	2413	53	2454
13	2414	54	2455
14	2415	55	2456
15	2416	56	2457
16	2417	57	2458
17	2418	58	2459
18	2419	59	2460
19	2420	60	2461
20	2421	61	2462
21	2422	62	2463
22	2423	63	2464
23	2424	64	2465
24	2420	65	2466
25	2426	66	2467
26	2427	67	2468
27	2428	68	2469
28	2429	69	2470
29	2430	70	2471
30	2431	71	2472
31	2432	72	2473
32	2433	73	2474
33	2434	74	2475
34	2435	75	2476
35	2436	76	2477
36	2437	77	2478
37	2438	78	2479
38	2439	79	2480
39	2440		
40	2441		
41	2442		

Page 7 of 65

2.3 Objective

Perform Radio Spectrum tests for CE Marking according to the provisions of article 3.2 of the Radio Equipment Directive (2014/53/EU) for the Bluetooth function of the EUT.

2.4 Test Items and The Results

The tests were performed according to following standards:

	Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band; Harmonized Standard for access to radio spectrum
--	--

ETSI EN 300 328 test items and the results are as bellow:

No.	Test Item	Standard Require	Result		
	Transmitter Requirement				
1	RF Output Power	sub-clause 4.3.1.2	Pass		
2	Duty Cycle, Tx-sequence, Tx-gap	sub-clause 4.3.1.3	N/A (See Note1,2)		
3	Accumulated transmit time, Frequency Occupation and hopping Sequence	sub-clause 4.3.1.4	Pass		
4	Hopping Frequency Separation	sub-clause 4.3.1.4	Pass		
6	Medium Utilisation (MU) Factor	sub-clause 4.3.2.5	N/A (See Note1,2)		
7	Adaptivity (Adaptive Frequency Hopping)	sub-clause 4.3.2.6	N/A (See Note1,3)		
8	Occupied Channel Bandwidth	sub-clause 4.3.2.7	Pass		
9	Transmitter Unwanted Emissions in the Out-of-Band Domain	sub-clause 4.3.2.8	Pass		
10	Transmitter Unwanted Emissions in the Spurious Domain	sub-clause 4.3.2.9	Pass		
	Receiver Requirement				
11	Receiver Spurious Emissions	sub-clause 4.3.2.10	Pass		
12	Receiver Blocking	sub-clause 4.3.2.11	Pass		

Note:

- 1. "N/A" means not applicable.
- 2. This device is a FHSS adaptive device and is not applicable to this test item.
- 3. The maximum RF output power of this device is less than 10dBm, so this test item is not applicable

Page 8 of 65

2.5 Description of Test Modes

Test Mode	Description
BR_TX_2402_1Mbps	Bluetooth BR Transmitting mode (Channel: 2402, Rate: 1Mbps)
BR_TX_2480_1Mbps	Bluetooth BR Transmitting mode (Channel: 2480, Rate: 1Mbps)
EDR_TX_2402_2Mbps	Bluetooth EDR Transmitting mode (Channel: 2402, Rate: 2Mbps)
EDR_TX_2480_2Mbps	Bluetooth EDR Transmitting mode (Channel: 2480, Rate: 2Mbps)
EDR_TX_2402_3Mbps	Bluetooth EDR Transmitting mode (Channel: 2402, Rate: 3Mbps)
EDR_TX_2480_3Mbps	Bluetooth EDR Transmitting mode (Channel: 2480, Rate: 3Mbps)
BR_HOP_NA_1Mbps	Bluetooth BR Hopping mode (Rate: 1Mbps)
EDR_HOP_NA_2Mbps	Bluetooth EDR Hopping mode (Rate: 2Mbps)
EDR_HOP_NA_3Mbps	Bluetooth EDR Hopping mode (Rate: 3Mbps)
BR_RX_2402_1Mbps	Bluetooth BR Receiving mode (Channel: 2402, Rate: 1Mbps)
BR_RX_2480_1Mbps	Bluetooth BR Receiving mode (Channel: 2480, Rate: 1Mbps)
EDR_RX_2402_2Mbps	Bluetooth EDR Receiving mode (Channel: 2402, Rate: 2Mbps)
EDR_RX_2480_2Mbps	Bluetooth EDR Receiving mode (Channel: 2480, Rate: 2Mbps)
EDR_RX_2402_3Mbps	Bluetooth EDR Receiving mode (Channel: 2402, Rate: 3Mbps)
EDR_RX_2480_3Mbps	Bluetooth EDR Receiving mode (Channel: 2480, Rate: 3Mbps)
Nata All manda bassa bassa taatad	and the suggest would test date recording in the test war set if you are start

Note: All modes have been tested and the worst mode test data recording in the test report, if no any other data.

Page 9 of 65

3. Setup of Equipment Under Test

3.1 Setup Configuration of EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

3.2 Support Equipment

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whethe	Whether support unit is used?				
⊠Yes [□No				
Item	Equipment	Trade Name	Model No.	Specification	
1	Control Box	USB-TTL			

Page 10 of 65

4. Test Environment

4.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

4.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

Page 11 of 65

4.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	45 % - 85 %
Pressure range (kPa)	86 - 106

4.4 Measurement Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Test Item	Measurement Uncertainty
Uncertainty of Radio Frequency	Uc=±1 x 10 ⁻⁷
Uncertainty of Total RF power, Conducted	Uc = ±0.8dB
Uncertainty of RF Power Density, Conducted	Uc = ±2.6dB
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$
Uncertainty of spurious Emissions, Conducted	$U_c = \pm 2.7 dB$
Uncertainty of Spurious Emissions, Radiated	$U_c = \pm 5.4 dB$
Uncertainty of Dwell Time	U _c = ±2%
Uncertainty of Temperature	U _c = 0.5° C
Uncertainty of Humidity	U _c = ±1 %
Uncertainty of DC and Low Frequency Voltages	U _c = ±2 %

Page 12 of 65

4.5 List of Equipment Used

• R	RF Conducted Test System						
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\boxtimes	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2025-01-30	2026-01-29
	AGC-ER-E041	Spectrum Analyzer	Agilent	N9020A	W1312-60196	2024-05-24	2025-05-23
	AGC-ER-E061	Spectrum Analyzer	Agilent	N9020A	MY52090123	2024-05-28	2025-05-27
\boxtimes	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2025-01-14	2026-01-13
\boxtimes	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2025-01-14	2026-01-13
	AGC-ER-E027	Power Sensor	Agilent	U2021XA	MY5411000B	2025-01-14	2026-01-13
\boxtimes	AGC-EM-A152	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08
\boxtimes	AGC-ER-E079	Wireless Connectivity Tester	R&S	CMW270	101933	2024-05-24	2025-05-23
\boxtimes	AGC-ER-E075	Small Environmental Tester	SH-242	ESPEC	93008290	2024-07-24	2026-07-23
	AGC-ER-E059	Signal Generator	Agilent	N5182B	MY53050647	2025-01-14	2026-01-13
\boxtimes	AGC-ER-E060	Signal Generator	Agilent	N5171B	MY53050474	2024-05-28	2025-05-27
\boxtimes	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2024-05-23	2025-05-22
		RF Connection Cable	N/A	1#	N/A	Each time	N/A
\boxtimes		RF Connection Cable	N/A	2#	N/A	Each time	N/A

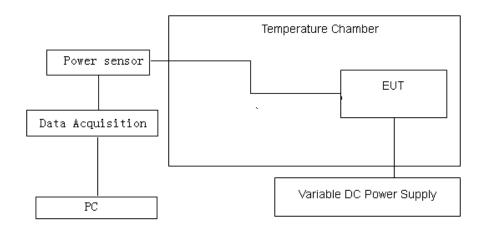
• F	Radiated Spurious Emission						
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2025-01-14	2026-01-13
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10
\boxtimes	AGC-EM-E005	Wideband Antenna	SCHWARZBECK	VULB9168	VULB9168-494	2025-01-03	2026-01-02
	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-05-24	2025-05-23
\boxtimes	AGC-EM-E102	Broadband Ridged Horn Antenna	ETS	3117	00154520	2023-06-03	2025-06-02
	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2024-07-24	2026-07-23
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2024-05-23	2025-05-22
\boxtimes	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08

Page 13 of 65

• Te:	Test Software						
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information		
\boxtimes	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0		
\boxtimes	AGC-ER-S012	BT/WIFI Test System	Tonscend	JS1120-2	2.6		
	AGC-ER-S009	BT/WIFI Test System	Tonscend	JS1120-3	2.6.77.0518		

Page 14 of 65

5. ETSI EN 300 328 Requirements for Transmitter


5.1 RF Output Power

The RF output power is defined as the mean equivalent isotropic radiated power (e.i.r.p.) of the equipment during a transmission burst.

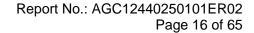
Test Limit

RF Output Power <= 100mW (20dBm) over Normal and Extreme conditions.

Test Setup

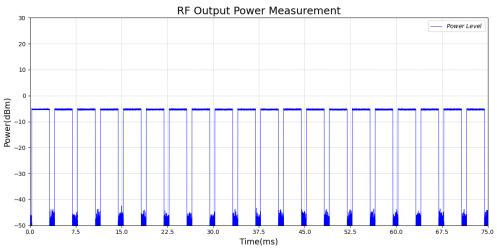
Test Procedure

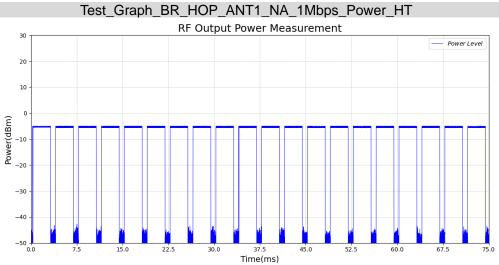
- 1) Use a fast power sensor and set the samples speed 1MS/s or faster.
- Connect one power sensor to each transmit port, Trigger the power sensors so that they start sampling at the same time. For each instant in time, sum the power of the individual samples of all ports and store them. Use these stored samples in all following steps.
- 3) Find the start and stop times of each burst in the stored measurement samples.
- 4) Between the start and stop times of each individual burst calculate the RMS power over the burst. Save these P burst values, as well as the start and stop times for each burst.
- 5) The highest of all P burst values (Value "A" in dBm) will be used for maximum e.i.r.p calculations.
- 6) The cable loss factor shall be considered to the value "A".
- Add the (stated) antenna assembly gain "G" in dBi of the individual antenna. If applicable, add the additional beamforming gain "Y" in dB.
- 8) The RF output power (P) shall be calculated using the formula: P=A+G+Y

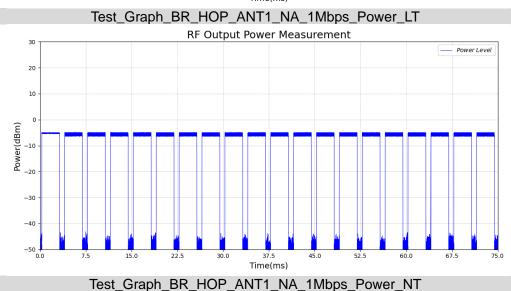


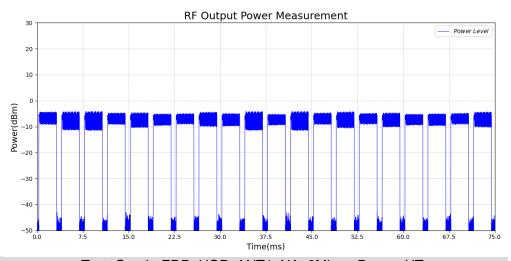
Page 15 of 65

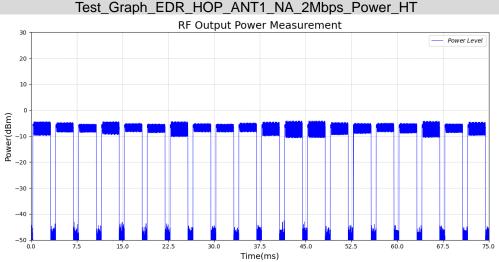
Test Result

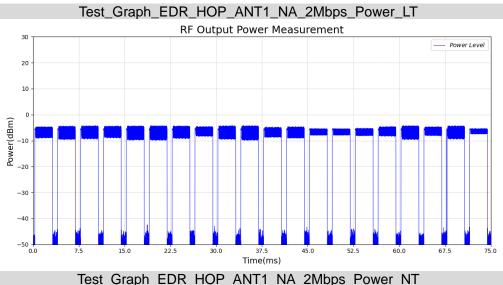

Test Temperature	24.8 °C	Relative Humidity	44 %
Test Engineer	Icey Huang	Testing Time	2025-02-20

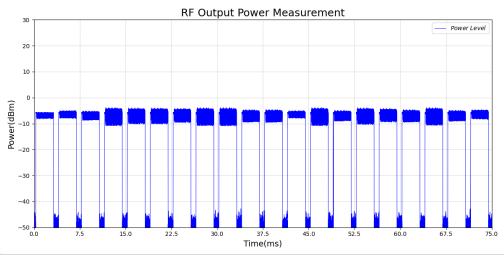

Test Data of RF Output Power							
Test Mode	RF (RF Output Power [dBm]			Manaliat		
rest Mode	NT	LT	HT	Limit [dBm]	Verdict		
BR_HOP_1Mbps	-3.98	-4.04	-4.06	20	Pass		
EDR_HOP_2Mbps	-5.09	-5.34	-5.30	20	Pass		
EDR_HOP_3Mbps	-5.20	-5.27	-5.28	20	Pass		

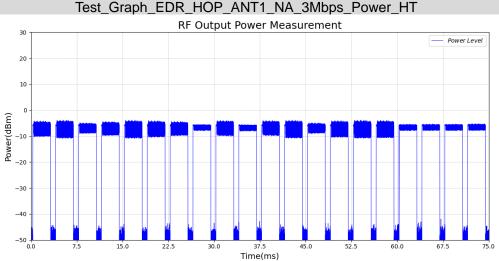


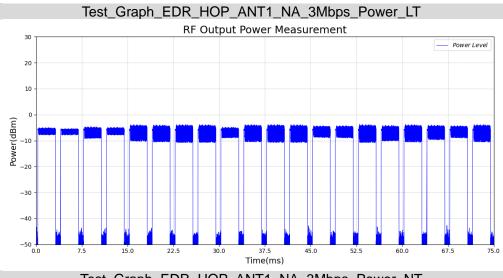

Test Graphs of RF Output Power











Test Graph EDR HOP ANT1 NA 3Mbps Power NT

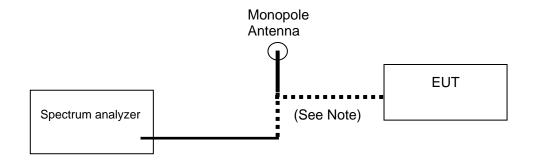
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Web: http://www.agccert.com/

Page 19 of 65

5.2 Accumulated Transmit Time, Frequency Occupiation and Hopping Sequence

The Accumulated Transmit Time is the total of the transmitter 'on'-times, during an observation period, on a particular hopping frequency.


The Frequency Occupation is the number of times that each hopping frequency is occupied within a given period. A hopping frequency is considered to be occupied when the equipment selects that frequency from the Hopping Sequence. FHSS equipment may be transmitting, receiving or stay idle during the dwell time spent on that hopping frequency.

The Hopping Sequence of a FHSS equipment is the pattern of the hopping frequencies used by the equipment

Test Limit

Accumulated Transmit Time				
Condition	Limit			
☐Non-adaptive frequency hopping systems	≤ 15ms			
	≤ 400ms			
Frequer	ncy Occupation			
Condition	Limit (Option 1)			
□Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding			
⊠Adaptive frequency hopping systems	four times the product of the dwell time and the number of hopping frequencies in use.			
Норріі	ng Sequence			
Condition	Limit			
□Non-adaptive frequency hopping systems	≥5 hopping frequencies or 5/minimum Hopping Frequency Separation in MHz, whichever is the greater.			
⊠Adaptive frequency hopping systems	Operating frequency band ≥58.45MHz (Operating over a minimum of 70 % of the operating in the band 2,4 GHz to 2,4835 GHz) ≥15 hopping frequencies or 15/minimum Hopping Frequency Separation in MHz, whichever is the greater.			

Test Setup

Remarks:

EUT was direct connected to test equipment through coupling device.

Test Procedure

Page 20 of 65

The test procedure refers to the requirements of EN 300 328 Section 5.4.4 as follows:

Step 1:

- The output of the transmitter shall be connected to a spectrum analyzer or equivalent.
- The analyzer shall be set as follows:
 - Centre Frequency: Equal to the hopping frequency being investigated
 - Frequency Span: 0 Hz RBW: ~ 50 % of the Occupied Channel Bandwidth
 - VBW: ≥ RBW Detector Mode: RMS
 - Sweep time: Equal to the applicable observation period (see clause 4.3.1.4.3.1 or clause 4.3.1.4.3.2)
 - Number of sweep points: 30 000
 - > Trace mode: Clear/Write
 - Trigger: Free Run

Step 2:

 Save the trace data to a file for further analysis by a computing device using an appropriate software application or program.

Step 3:

• Identify the data points related to the frequency being investigated by applying a threshold.

The data points resulting from transmissions on the hopping frequency being investigated are assumed to have much higher levels compared to data points resulting from transmissions on adjacent hopping frequencies. If a clear determination between these transmissions is not possible, the RBW in step 1 shall be further reduced. In addition, a channel filter may be used.

 Count the number of data points identified as resulting from transmissions on the frequency being investigated and multiply this number by the time difference between two consecutive data points.

Step 4:

• The result in step 3 is the Accumulated Transmit Time which shall comply with the limit provided in clause 4.3.1.4.3.1 or clause 4.3.1.4.3.2 and which shall be recorded in the test report.

Step 5:

This step is only applicable for equipment implementing Option 1 in clause 4.3.1.4.3.1 or Option 1 in clause 4.3.1.4.3.2 for complying with the Frequency Occupation requirement.

Make the following changes on the analyzer and repeat step 2 and step 3.

Sweep time: 4 x dwell time x Actual number of hopping frequencies in use.

The hopping frequencies occupied by the equipment without having transmissions during the dwell time (blacklisted frequencies) should be taken into account in the actual number of hopping frequencies in use. If this number cannot be determined (number of blacklisted frequencies unknown) it shall be assumed that the equipment uses the maximum possible number of hopping frequencies.

• The result shall be compared to the limit for the Frequency Occupation defined in clause 4.3.1.4.3.1, Option 1 or clause 4.3.1.4.3.2, Option 1. The result of this comparison shall be recorded in the test report.

Page 21 of 65

Step 6:

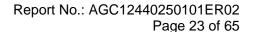
- Make the following changes on the analyzer:
 - Start Frequency: 2 400 MHzStop Frequency: 2 483,5 MHz
 - RBW: ~ 50 % of the Occupied Channel Bandwidth (single hopping frequency)
 - VBW: ≥ RBW
 - Detector Mode: Peak
 - Sweep time: 1 s; this setting may result in long measuring times. To avoid such long measuring times, an FFT analyzer may be used
 - Number of sweep points: ~ 400 / Occupied Channel Bandwidth (MHz); the number of sweep points may need to be further increased in case of overlapping channels
 - Trace Mode: Max Hold
 - Trigger: Free Run
- Wait for the trace to stabilize. Identify the number of hopping frequencies used by the Hopping Sequence.
- The result shall be compared to the limit (value N) defined in clause 4.3.1.4.3.1 or clause 4.3.1.4.3.2. This value shall be recorded in the test report.

For equipment with blacklisted frequencies, it might not be possible to verify the number of hopping frequencies in use. However, they shall comply with the requirement for Accumulated Transmit Time and Frequency Occupation assuming the minimum number of hopping frequencies (N) defined in clause 4.3.1.4.3.1 or clause 4.3.1.4.3.2 is used.

Step 7:

• For adaptive FHSS equipment, it shall be verified whether the equipment uses 70 % of the band specified in table 1. This verification can be done using the lowest and highest -20 dB points from the total spectrum envelope obtained in step 6. The result shall be recorded in the test report.

Page 22 of 65

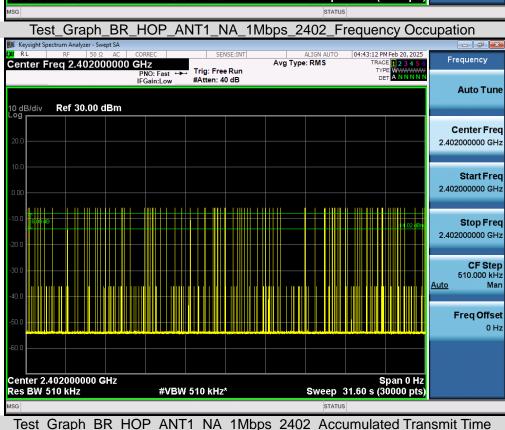

Test Result

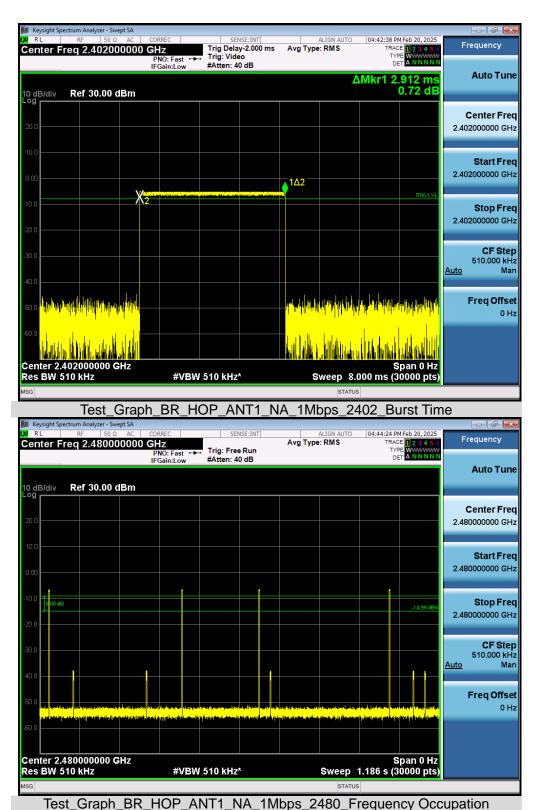
Test Temperature	24.8 °C	Relative Humidity	44 %
Test Engineer	Icey Huang	Testing Time	2025-02-20

Test Data of Accumulated Transmit Time, Frequency Occupation							
Test Mode Channel Accumulated Limit Frequency Limit Verdict (MHz) transmit time (ms) (ms) Occupation (pcs) (pcs)							
BR_HOP_1Mbps	2402	285.376	≤400	6	≥1	Pass	
BR_HOP_1Mbps	2480	237.350	≤400	4	≥1	Pass	

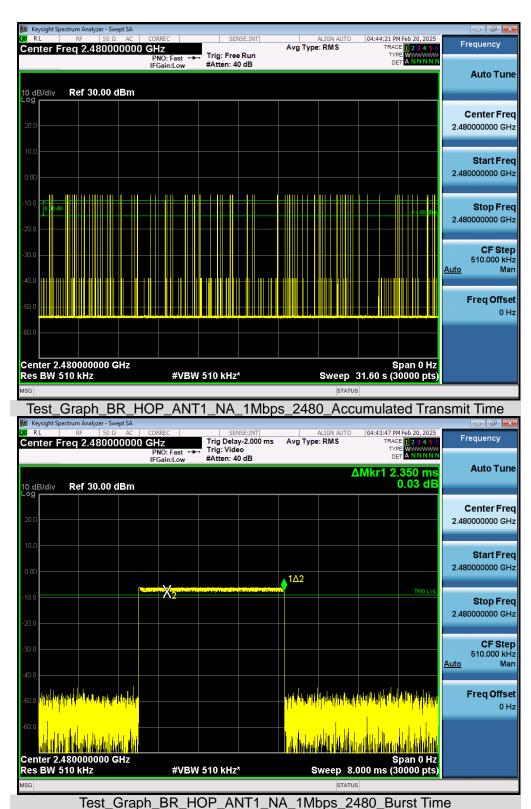
Note:

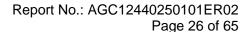
- 1) All the modes had been tested, but only the worst data recorded in the report.
- 2) The Accumulated transmit time and Dwell Time are calculated by a computing device using an appropriate software application or program.
- 3) Sweep time for Frequency Occupation= Dwell Time*4*79.



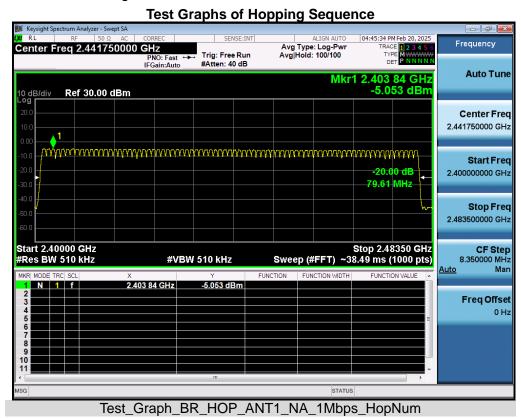

Test Graphs of Accumulated Transmit Time, Frequency Occupation 04:43:15 PM Feb 20, 2025

TRACE 1 2 3 4 5


TYPE WWW.W.W. ALIGN AUTO
Avg Type: RMS Center Freq 2.402000000 GHz
PN0: Fast PFGain:Low Frequency Trig: Free Run **Auto Tune** Ref 30.00 dBm 10 dB/div Center Freq 2.402000000 GHz Start Freq 2.402000000 GHz Stop Freq 2.402000000 GHz CF Step 510.000 kHz <u>Auto</u> Man Freq Offset 0 Hz Center 2.402000000 GHz Res BW 510 kHz Span 0 Hz Sweep 1.186 s (30000 pts) **#VBW** 510 kHz*



Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.


Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Test Data of Hopping Sequence					
Test Mode Number of hopping Limit -20dBc Hopping Limit Werdict					Verdict
BR_HOP_1Mbps	78	≥15	79.605	≥58.45	Pass

Note: The modulation used during test is GFSK and this is the worst case.

Report No.: AGC12440250101ER02 Page 27 of 65

5.3 Hopping Frequency Separation

The Hopping Frequency Separation is the frequency separation between two adjacent hopping frequencies.

Test Limit

For Non-adaptive frequency hopping systems:

The minimum Hopping Frequency Separation shall be equal to Occupied Channel Bandwidth (see clause 4.3.1.7) of a single hop, with a minimum separation of 100 kHz.

For Adaptive frequency hopping systems:

The minimum Hopping Frequency Separation shall be 100 kHz.

Test Setup

Remarks:

EUT was direct connected to test equipment through coupling device.

Test Procedure

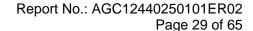
Refer as EN 300 328, clause 5.4.5 for the test conditions and the measurement method. The test procedure shall be as follows:

Step 1:

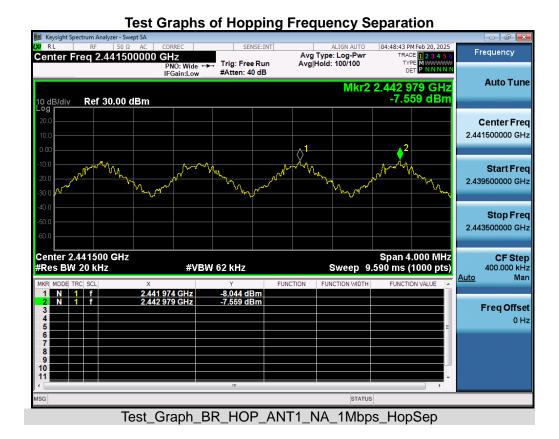
- The output of the transmitter shall be connected to a spectrum analyzer or equivalent.
- The analyzer shall be set as follows:
 - > Centre Frequency: Centre of the two adjacent hopping frequencies
 - Frequency Span: Sufficient to see the complete power envelope of both hopping frequencies
 - RBW: 1 % of the span (30KHz)
 - VBW: 3 x RBW (100KHz)
 - Detector Mode: Max Peak
 - Trace Mode: Max Hold
 - Sweep Time: Auto

Step 2:

- Wait for the trace to stabilize.
- Use the marker-delta function to determine the Hopping Frequency Separation between the center of the
 two adjacent hopping frequencies (e.g. by identifying peaks or notches at the center of the power envelope
 for the two adjacent signals). This value shall be compared with the limits defined in clause 4.3.1.5.3 and
 shall be recorded in the test report.



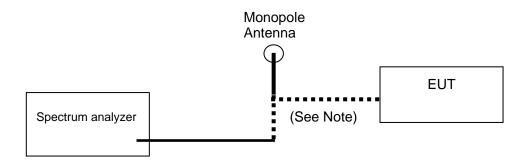
Page 28 of 65


Test Result

Test Temperature	24.8 °C	Relative Humidity	44 %
Test Engineer	Icey Huang	Testing Time	2025-02-20

Test Data of Hopping Frequency Separation					
Test Mode Hopping Frequency Separation [MHz] Limit [MHz] Verd					
BR_HOP_1Mbps	1.005	≥0.1	Pass		

Page 30 of 65


5.4 Occupied Channel Bandwidth

The Occupied Channel Bandwidth is the bandwidth that contains 99 % of the power of the signal.

Test Limit

The Occupied Channel Bandwidth shall fall completely within the band 2400MHz to 2483.5MHz.

Test Setup

Remarks:

EUT was direct connected to test equipment through coupling device.

Test Procedure

- 1) The spectrum analyser shall be used the following settings:
- 2) Centre Frequency: The centre frequency of the channel under test
 - Resolution BW: ~1% of the span without going below 1%
 - Video BW: 3×RBWSpan: 2×OBW
 - Detector: RMS
 - Trace mode: Max Hold
- 3) Wait until the trace is completed, find the peak value of the trace and place the analyser marker on this peak.
- 4) Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

Page 31 of 65

Test Result

Test Temperature	24.8 °C	Relative Humidity	44 %
Test Engineer	Icey Huang	Testing Time	2025-02-20

Test Data of Occupied Channel Bandwidth							
Test Mode	Occupied Channel Bandwidth [MHz]			Limit [MH=]	Verdict		
	OCB	FL	FH	Limit [MHz]	verdict		
BR_2402_1Mbps	0.859	2401.554	2402.413	2400 to 2483.5	Pass		
BR_2480_1Mbps	0.860	2479.547	2480.407	2400 to 2483.5	Pass		
EDR_2402_2Mbps	1.191	2401.391	2402.582	2400 to 2483.5	Pass		
EDR_2480_2Mbps	1.191	2479.385	2480.576	2400 to 2483.5	Pass		
EDR_2402_3Mbps	1.196	2401.387	2402.583	2400 to 2483.5	Pass		
EDR_2480_3Mbps	1.197	2479.380	2480.577	2400 to 2483.5	Pass		

Test Graphs of Occupied Channel Bandwidth 04:31:36 PM Feb 20, 2025 Radio Std: None Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hole #Atten: 30 dB Frequency Center Freq 2.402000000 GHz Avg|Hold: 10/10 Radio Device: BTS Mkr3 2.4024134 GHz -33.802 dBm Ref 20.00 dBm Center Freq 2.402000000 GHz Center 2.402 GHz Span 2 MHz CF Step 200.000 kHz #Res BW 20 kHz #VBW 62 kHz #Sweep 1 s <u>Auto</u> Man **Total Power** -4.80 dBm Occupied Bandwidth 859.10 kHz Freq Offset 0 Hz -16.139 kHz 99.00 % **Transmit Freq Error OBW Power** x dB Bandwidth 1.117 MHz x dB -26.00 dB Test_Graph_BR_ANT1_2402_1Mbps_OBW 04:32:42 PM Feb 20, 2025 Center Freq: 2.480000000 GHz Trig: Free Run Avg|Hol #Atten: 30 dB Center Freq 2.480000000 GHz Radio Std: Non Avg|Hold: 10/10 Radio Device: BTS #IFGain:Low 2.4804067 GHz -35.474 dBm Mkr3 Ref 20.00 dBm Center Freq 2.480000000 GHz Center 2.48 GHz #Res BW 20 kHz Span 2 MHz #Sweep 1 s **CF Step #VBW** 62 kHz 200,000 kHz <u>Auto</u> Occupied Bandwidth **Total Power** -6.49 dBm 859.62 kHz Freq Offset 0 Hz **Transmit Freq Error** -23.325 kHz **OBW Power** 99.00 % x dB Bandwidth -26.00 dB 1.118 MHz x dB

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test Graph BR ANT1 2480 1Mbps OBW

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

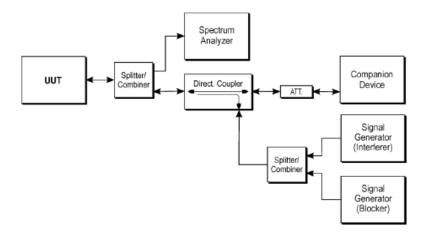
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test_Graph_EDR_ANT1_2480_3Mbps_OBW

Page 35 of 65

5.5 Adaptivity (Adaptive Frequency Hopping)

The method of adaptivity is using LBT based on LBE.

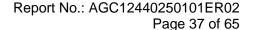

Adaptive FHSS using LBT is a mechanism by which FHSS adaptive equipment avoids transmissions in a channel in the presence of an interfering signal in that channel. This mechanism shall operate as intended in the presence of an unwanted signal on frequencies other than those of the operating band.

Test Limit

- The Channel Occupancy Time shall be less than 13ms.
- If implemented, short control signaling transmissions for adaptive devices using wideband modulation of FHSS shall have a maximum duty cycle of 10% within an observation period of 50 ms.
- For power levels less than 20 dBm e.i.r.p., the CCA threshold level (TL) may be relaxed to:
- TL = $-70 \text{ dBm/MHz} + 10 \times \log 10 (100 \text{mW} / \text{Pout}) (\text{Pout in mW e.i.r.p.})$
- An unwanted CW signal as defined in the below table.

	I signal mean power companion device (dBm)	Unwanted signal frequency (MHz)	Unwanted CW signal power (dBm)			
	-30	2 395 or 2 488,5	-35			
8	(see note 2)	(see note 1)	(see note 2)			
NOTE 1:	range 2 400 MHz to 2 4	shall be used for testing op 142 MHz, while the lowest fi nels within the range 2 442 I	requency shall be used for			
NOTE 2:	The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density in front of the UUT antenna (see example below).					

Test Setup


Page 36 of 65

Test Procedure

- The EUT connect to a companion device during the test. Adjust the received signal level at the EUT to the value of -50dBm/MHz.
- 2) the analyzer shall be set as below: RBW>=Occupied Channel Bandwidth (if the analyser does not support this setting, the highest available setting shall be used) and VBW>=3×RBW.
- Configure the EUT for normal transmission with a sufficiently high payload to allow demonstration of compliance of the adaptive mechanism on the channel being tested.
- 4) Adding the interference signal and verification of reaction to the interference signal.
- 5) Adding the unwanted signal and verification of reaction to the unwanted signal.
- 6) Removing the interference and unwanted signal.

Test Result

Note: The EIRP of the EUT is less than 10dBm, So the adaptivity test is not applicable for the EUT.

5.6 Transmitter Unwanted Emissions in the Out-of-Band Domain

In the present document, transmitter unwanted emissions in the out-of-band domain are emissions when the equipment is in Transmit mode, on frequencies immediately outside the allocated band, but excluding unwanted emissions in the spurious domain.

Test Limit

The transmitter unwanted emissions in the out-of-band domain shall not exceed the values provided by the mask in figure 3.

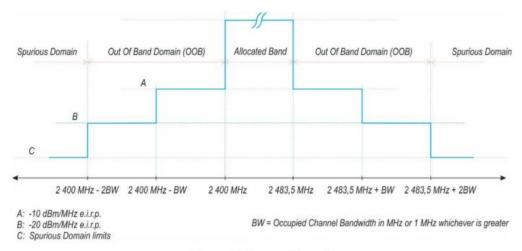
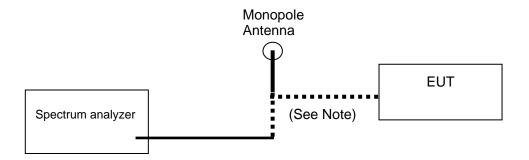



Figure 3: Transmit mask

Test Setup

Remarks:

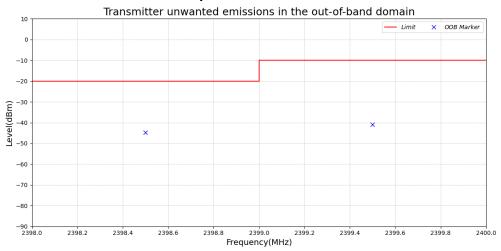
EUT was direct connected to test equipment through coupling device.

Page 38 of 65

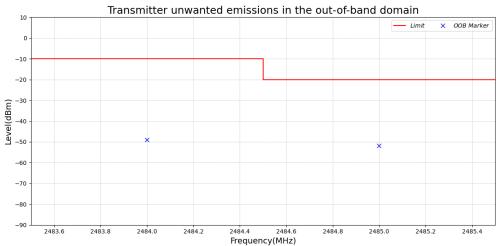
Test Procedure

- 1) The spectrum analyzer shall be used the following settings:
 - ◆ Centre Frequency: 2484MHz
 - ◆ Resolution BW: 1MHz; Video BW: 3MHz; Span: 0Hz; Detector: RMS
 - ◆ Trace mode: Max Hold; Sweep Points: 5000
- 2) Segment 2 483.5 MHz to 2 483.5 MHz + BW
 - ◆ Adjust the trigger level to select the transmissions with the highest power level.
 - ◆ Increase the center frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483.5 MHz to 2 483.5 MHz + BW.
- 3) Segment 2 483.5 MHz + BW to 2 483.5 MHz + 2BW
 - ◆ Change the center frequency of the analyzer to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483.5 MHz + BW to 2 483.5 MHz + 2BW. Increase the center frequency in 1 MHz steps and repeat the measurements to cover this whole range. The center frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW − 0.5MHz.
- 4) Segment 2 400 MHz BW to 2 400 MHz
 - Change the center frequency of the analyzer to 2 399.5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz BW to 2 400 MHz Reduce the center frequency in 1 MHz steps and repeat the measurements to cover this whole range. The center frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0.5MHz.
- 5) Segment 2 400 MHz 2BW to 2 400 MHz BW
 - Change the center frequency of the analyzer to 2 399,5 MHz BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the center frequency in 1 MHz steps and repeat the measurements to cover this whole range. The center frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0.5MHz.
- 6) The cable loss and attenuator factor shall be considered to the test result.

Page 39 of 65


Test Result

Test Temperature	24.8℃	Relative Humidity	44 %
Test Engineer	Icey Huang	Testing Time	2025-02-20


Test Data of OOB Emissions							
Test Mode Frequency [MHz] Level [dBm] Limit [dBm] Verdict							
BR_HOP_1Mbps	2399.5	-40.81	-10	Pass			
BR_HOP_1Mbps	2398.5	-44.78	-20	Pass			
BR_HOP_1Mbps	2484	-48.98	-10	Pass			
BR_HOP_1Mbps	2485	-51.88	-20	Pass			

Test Graphs of OOB Emissions

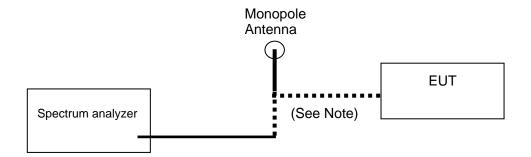
Test_Graph_BR_HOP_ANT1_NA_1Mbps_OOB_L

Test_Graph_BR_HOP_ANT1_NA_1Mbps_OOB_R

Page 41 of 65

5.7 Transmitter Unwanted Emissions in the Spurious Domain

In the present document, transmitter unwanted emissions in the spurious domain are emissions outside the allocated band and outside the Out-of-band Domain as indicated in figure 3 when the equipment is in Transmit mode.

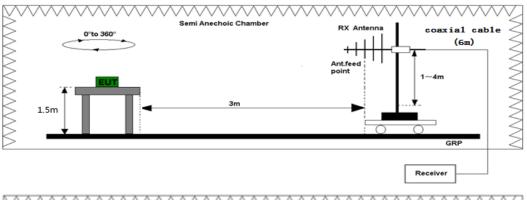

Test Limit

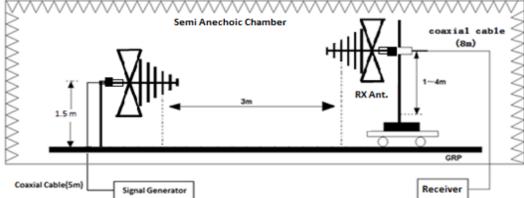
The transmitter unwanted emissions in the spurious domain shall not exceed the values.

Frequency Range	Maximum Power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 694 MHz	-54 dBm	100 kHz
694 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

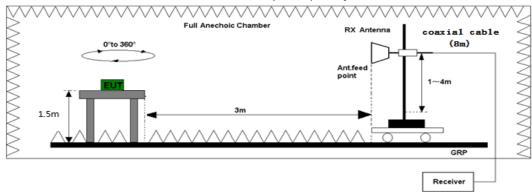
Test Setup

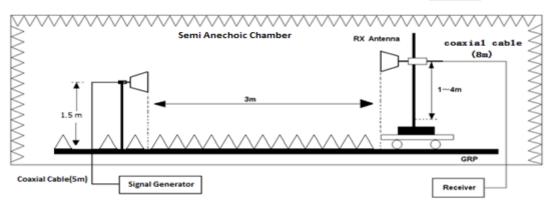
⊠ Conducted Measurement Method:




Remarks:

EUT was direct connected to test equipment through coupling device.




⊠ Radiated Measurement Method:

Radiated Emission Test Set-Up Frequency 30 MHz ~ 1 GHz

Radiated Emission Test Set-Up Frequency Above 1 GHz

Page 43 of 65

Test Procedure

1) The emissions over the range 30 MHz to 1 000 MHz shall be identified.

2) Spectrum analyzer settings:

Resolution bandwidth: 100 kHz
 Video bandwidth: 300 kHz
 Detector mode: Peak
 Sweep Points: ≥19 400
 Trace Mode: Max Hold

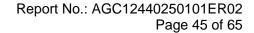
 Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.

3) The emissions over the range 1 GHz to 12,75 GHz shall be identified.

Resolution bandwidth: 1 MHz
 Video bandwidth: 3 MHz
 Detector mode: Peak
 Trace Mode: Max Hold
 Sweep Points: ≥23 500

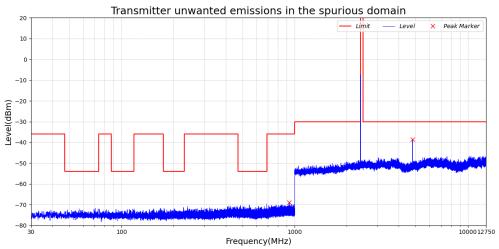
 Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.

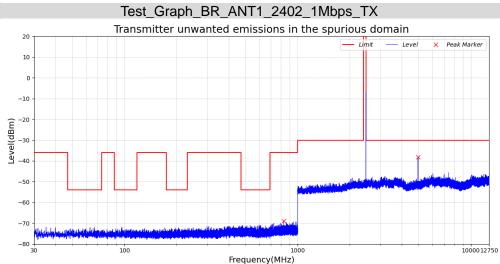
4) For radiated method, the applicable measurement procedures as described in the EN 300 328 V2.2.2 annex C.2 and C.4 are used.


Page 44 of 65

Test Result

⊠ Conducted Measurement Method:


Test Temperature	24.8℃	Relative Humidity	44 %
Test Engineer	Icey Huang	Testing Time	2025-02-20


Test Data of Transmitter Spurious Emissions						
lest	Data of Transmitter Spu	Irious Emissions				
Test Mode Frequency [MHz] Level [dBm] Limit [dBm] Verdic						
BR_2402_1Mbps	929.479	-68.91	-36.00	Pass		
BR_2402_1Mbps	4804.385	-38.57	-30.00	Pass		
BR_2480_1Mbps	830.147	-69.01	-36.00	Pass		
BR_2480_1Mbps	4960.274	-38.27	-30.00	Pass		

Test Graphs of Transmitter Spurious Emissions

Test_Graph_BR_ANT1_2480_1Mbps_TX

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Page 46 of 65

☒ Radiated Measurement Method:

Test Temperature	24.8℃	Relative Humidity	44 %		
Test Engineer	Icey Huang	Testing Time	2025-02-20		
Worst Mode	BR_TX_2402_1Mbps				
Verdict	Pass				

■ Transmitter Spurious Emission below 1GHz (30MHz-1GHz)

Frequency (MHz)	Reading Level (dBµV/m)	S.G. (dBm)	Cable Loss (dB)	Ant.Gain (dBi)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
			Antenna Po	olarity: Vertica	ıl		
78.06	28.94	-63.18	0.04	-0.50	-63.72	-36.00	27.72
234.23	30.07	-69.09	0.11	6.60	-62.60	-36.00	26.60
379.79	29.28	-70.07	0.28	6.51	-63.84	-36.00	27.84
387.45	30.32	-69.73	0.29	6.43	-63.59	-36.00	27.59
424.52	27.00	-72.91	0.33	7.02	-66.22	-36.00	30.22
828.93	31.85	-67.25	0.66	6.40	-61.51	-36.00	25.51
Other (30-1000)						-36.00/-54.00	
			Antenna Pol	arity: Horizon	tal		
139.29	31.23	-61.93	0.05	0.00	-61.98	-36.00	25.98
339.24	32.28	-67.09	0.23	5.74	-61.58	-36.00	25.58
396.95	29.50	-69.87	0.30	6.52	-63.65	-36.00	27.65
455.96	28.25	-71.26	0.37	6.55	-65.08	-36.00	29.08
613.18	31.58	-67.33	0.50	6.62	-61.21	-54.00	7.21
769.48	31.54	-67.67	0.62	6.87	-61.41	-36.00	25.41
Other (30-1000)						-36.00/-54.00	

Page 47 of 65

■ Transmitter Spurious Emission above 1GHz (1GHz-12.75GHz)

Frequency (MHz)	Reading Level (dBµV/m)	S.G. (dBm)	Cable Loss (dB)	Ant.Gain (dBi)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
			Antenna Pola	arity: Vertical			
4804	58.67	-40.36	2.64	9.30	-33.70	-30.00	3.70
7206	56.54	-45.48	3.14	11.28	-37.34	-30.00	7.34
Other (1000-12750)				1		-30.00	I
		/	Antenna Polar	ity: Horizontal			
4804	59.42	-41.02	2.64	9.30	-34.35	-30.00	4.35
7206	56.13	-44.51	3.14	11.28	-36.36	-30.00	6.36
Other (1000-12750)						-30.00	

Note:

- 1. The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Emission Level=S.G.+ Ant.Gain- Cable Loss, Margin= Limit- Emission Level

Page 48 of 65

Test Temperature	24.8℃	Relative Humidity	44 %		
Test Engineer	Icey Huang	Testing Time	2025-02-20		
Worst Mode	BR_TX_2480_1Mbps				
Verdict	Pass				

■ Transmitter Spurious Emission below 1GHz (30MHz-1GHz)

Frequency (MHz)	Reading Level (dBµV/m)	S.G. (dBm)	Cable Loss (dB)	Ant.Gain (dBi)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
			Antenna Po	olarity: Vertica	ıl		
77.65	27.54	-64.76	0.04	-0.70	-65.50	-36.00	29.50
236.49	29.52	-70.25	0.11	6.60	-63.76	-36.00	27.76
379.58	29.31	-69.43	0.28	6.51	-63.20	-36.00	27.20
388.22	30.50	-69.53	0.29	6.42	-63.40	-36.00	27.40
424.18	28.03	-72.81	0.33	7.02	-66.12	-36.00	30.12
830.86	31.50	-67.51	0.66	6.30	-61.87	-36.00	25.87
Other (30-1000)						-36.00/-54.00	
			Antenna Pol	arity: Horizon	tal		
138.76	31.57	-62.25	0.05	0.00	-62.30	-36.00	26.30
340.65	32.43	-66.46	0.23	5.70	-60.99	-36.00	24.99
395.01	29.95	-70.23	0.30	6.50	-64.03	-36.00	28.03
456.20	28.57	-71.18	0.37	6.58	-64.97	-36.00	28.97
617.22	31.08	-68.27	0.51	6.78	-62.00	-54.00	8.00
764.66	30.94	-68.25	0.61	6.72	-62.15	-36.00	26.15
Other (30-1000)						-36.00/-54.00	

Page 49 of 65

■ Transmitter Spurious Emission above 1GHz (1GHz-12.75GHz)

Frequency (MHz)	Reading Level (dBµV/m)	S.G. (dBm)	Cable Loss (dB)	Ant.Gain (dBi)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
			Antenna Pola	arity: Vertical			
4960	58.74	-41.06	2.75	9.62	-34.19	-30.00	4.19
7440	53.25	-48.71	3.09	11.62	-40.18	-30.00	10.18
Other (1000-12750)						-30.00	
		/	Antenna Polari	ity: Horizontal			
4960	57.68	-41.77	2.75	9.62	-34.90	-30.00	4.90
7440	52.16	-50.00	3.09	11.62	-41.48	-30.00	11.48
				-			
Other (1000-12750)						-30.00	

Note:

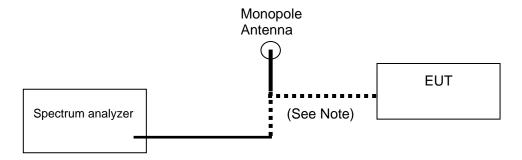
- 1. The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Emission Level=S.G.+ Ant.Gain- Cable Loss, Margin= Limit- Emission Level

Page 50 of 65

6. ETSI EN 300 328 Requirements for Receiver

6.1 Receiver Unwanted Emissions in the Spurious Domain

Receiver spurious emissions are emissions at any frequency when the equipment is in receive mode.

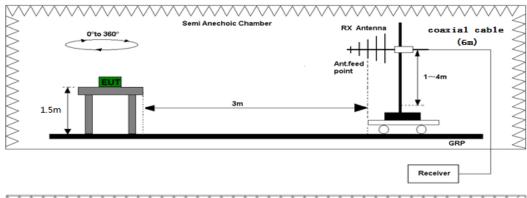

Test Limit

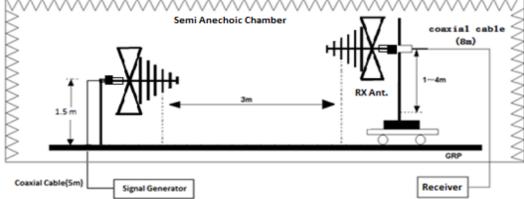
The transmitter unwanted emissions in the spurious domain shall not exceed the values.

Frequency Range	Maximum Power	Bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12.75 GHz	-47 dBm	1 MHz

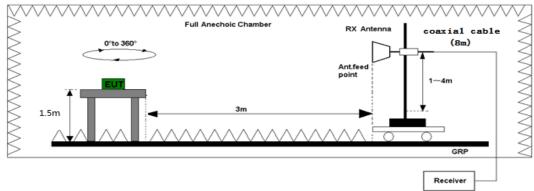
Test Setup

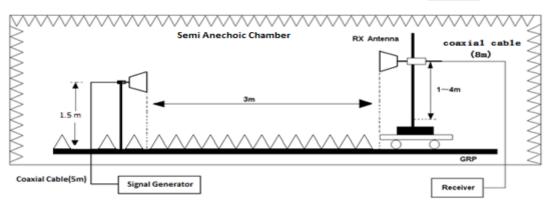
⊠ Conducted Measurement Method:




Remarks:

EUT was direct connected to test equipment through coupling device.




⊠ Radiated Measurement Method:

Radiated Emission Test Set-Up Frequency 30 MHz ~ 1 GHz

Radiated Emission Test Set-Up Frequency Above 1 GHz

Page 52 of 65

Test Procedure

1) The emissions over the range 30 MHz to 1 000 MHz shall be identified.

2) Spectrum analyzer settings:

Resolution bandwidth: 100 kHz
 Video bandwidth: 300 kHz
 Detector mode: Peak
 Sweep Points: ≥19 400
 Trace Mode: Max Hold

 Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.

3) The emissions over the range 1 GHz to 12,75 GHz shall be identified.

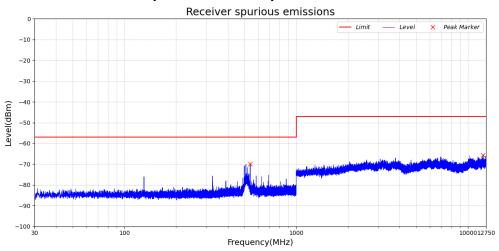
Resolution bandwidth: 1 MHz
 Video bandwidth: 3 MHz
 Detector mode: Peak
 Trace Mode: Max Hold
 Sweep Points: ≥23 500

 Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.

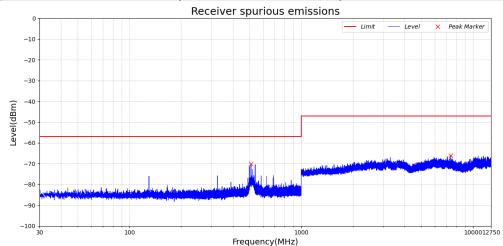
4) For radiated method, the applicable measurement procedures as described in the EN 300 328 V2.2.2 annex C.2 and C.4 are used.

Page 53 of 65

Test Result


⊠ Conducted Measurement Method:

Test Temperature	24.8 °C	Relative Humidity	44 %
Test Engineer	Icey Huang	Testing Time	2025-02-20


Test Data of Receiver Spurious Emissions							
Test Mode	Frequency [MHz]	Level [dBm]	Limit [dBm]	Verdict			
BR_2402_1Mbps	539.994	-69.86	-57.00	Pass			
BR_2402_1Mbps	12223.992	-65.62	-47.00	Pass			
BR_2480_1Mbps	509.988	-70.1	-57.00	Pass			
BR_2480_1Mbps	7430.775	-66.03	-47.00	Pass			

Test Graphs of Receiver Spurious Emissions

Test_Graph_RX_ANT1_2480_1Mbps_RX

Page 55 of 65

☒ Radiated Measurement Method:

Test Temperature	24.8℃	Relative Humidity	44 %
Test Engineer	Icey Huang	Testing Time	2025-02-20
Worst Mode	BR_RX_2402_1Mbps		
Verdict	Pass		

■ Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Frequency (MHz)	Reading Level (dBµV/m)	S.G. (dBm)	Cable Loss (dB)	Ant.Gain (dBi)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
			Antenna Pola	arity: Vertical			
89.29	28.34	-65.18	0.04	1.26	-63.96	-57.00	6.96
241.26	31.05	-68.90	0.12	6.66	-62.36	-57.00	5.36
313.64	27.72	-70.93	0.20	6.31	-64.82	-57.00	7.82
387.09	29.61	-69.35	0.29	6.43	-63.21	-57.00	6.21
475.82	28.32	-71.71	0.39	6.85	-65.25	-57.00	8.25
832.09	30.61	-68.10	0.66	6.44	-62.32	-57.00	5.32
Other (30-1000)						-57.00	
		,	Antenna Polar	ity: Horizontal			
139.62	29.33	-64.48	0.05	0.00	-64.53	-57.00	7.53
331.35	29.67	-68.53	0.22	6.06	-62.69	-57.00	5.69
395.42	29.30	-70.85	0.30	6.50	-64.65	-57.00	7.65
566.35	30.08	-69.74	0.47	6.84	-63.37	-57.00	6.37
613.32	28.07	-70.44	0.50	6.62	-64.32	-57.00	7.32
817.91	29.16	-69.36	0.65	6.89	-63.12	-57.00	6.12
Other (30-1000)						-57.00	

Page 56 of 65

■ Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Frequency (MHz)	Reading Level (dBµV/m)	S.G. (dBm)	Cable Loss (dB)	Ant.Gain (dBi)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
			Antenna Pola	arity: Vertical			
4804	52.01	-47.35	2.65	9.34	-40.66	-47.00	10.66
Other (1000-12750)						-47.00	
		,	Antenna Polar	ity: Horizontal			
4804	51.32	-49.53	2.65	9.34	-42.84	-47.00	12.84
Other (1000-12750)						-47.00	

Note:

- 1. The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Emission Level=S.G.+ Ant.Gain- Cable Loss, Margin= Limit- Emission Level

Page 57 of 65

Test Temperature	24.8℃	Relative Humidity	44 %		
Test Engineer	Icey Huang	Testing Time	2025-02-20		
Worst Mode	BR_RX_2480_1Mbps				
Verdict	Pass				

■ Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Frequency (MHz)	Reading Level (dBµV/m)	S.G. (dBm)	Cable Loss (dB)	Ant.Gain (dBi)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
			Antenna Pola	rity: Vertical			
92.06	28.31	-65.46	0.04	1.56	-63.94	-57.00	6.94
242.14	30.41	-69.51	0.12	6.72	-62.91	-57.00	5.91
313.80	28.94	-69.55	0.20	6.31	-63.44	-57.00	6.44
382.97	28.31	-71.46	0.28	6.48	-65.26	-57.00	8.26
477.56	29.06	-71.47	0.39	6.87	-64.99	-57.00	7.99
831.63	30.24	-68.24	0.66	6.37	-62.53	-57.00	5.53
Other (30-1000)						-57.00	
		,	Antenna Polari	ity: Horizontal			
137.02	29.60	-62.60	0.05	0.00	-62.65	-57.00	5.65
335.23	28.75	-69.22	0.23	5.90	-63.55	-57.00	6.55
395.60	31.05	-68.80	0.30	6.50	-62.60	-57.00	5.60
569.32	29.78	-69.21	0.47	6.81	-62.88	-57.00	5.88
616.15	28.61	-70.82	0.51	6.74	-64.58	-57.00	7.58
816.11	29.34	-70.78	0.65	6.92	-64.51	-57.00	7.51
Other (30-1000)						-57.00	

Page 58 of 65

■ Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Frequency (MHz)	Reading Level (dBµV/m)	S.G. (dBm)	Cable Loss (dB)	Ant.Gain (dBi)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
			Antenna Pola	arity: Vertical			
1830.48	33.26	-65.00	1.26	7.15	-59.11	-47.00	12.11
Other (1000-12750)						-47.00	
	Antenna Polarity: Horizontal						
1786.77	31.52	-68.12	1.23	6.93	-62.42	-47.00	15.42
Other (1000-12750)						-47.00	

Note:

- 1. The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Emission Level=S.G.+ Ant.Gain- Cable Loss, Margin= Limit- Emission Level

Page 59 of 65

6.2 Receiver Blocking

Receiver blocking is a measure of the ability of the equipment to receive a wanted signal on its operating channel without exceeding a given degradation due to the presence of an unwanted input signal (blocking signal) at frequencies other than those of the operating band and spurious responses.

Test Limit

Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from	Blocking signal	Blocking signal	Type of
companion device (dBm)	frequency	power (dBm)	blocking
(see notes 1 and 4)	(MHz)	(see note 4)	signal
(-133 dBm + 10 × log10(OCBW)) or -68 dBm	2 380		
whichever is less (see note 2)	2 504		
(-139 dBm + 10 × log10(OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2 524 2 584 2 674	-34	CW

NOTE 1: OCBW is in Hz.

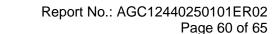
NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Receiver Blocking parameters for Receiver Category 2 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency	Blocking signal power (dBm)	Type of blocking
(see notes 1 and 3)	(MHz)	(see note 3)	signal
(-139 dBm + 10 × log10(OCBW) + 10 dB) or (-74 dBm + 10 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW


NOTE 1: OCBW is in Hz.

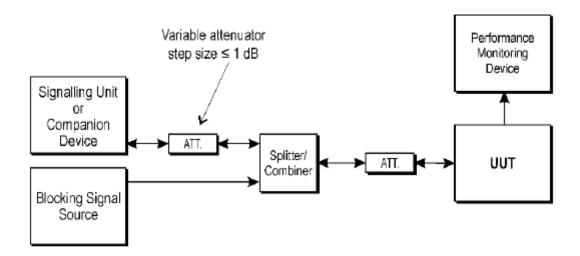
NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

⊠Receiver Blocking parameters for Receiver Category 3 equipment


Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log10(OCBW) + 20 dB) or (-74 dBm + 20 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Test Setup

Test Set-up for receiver blocking

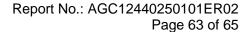
Page 61 of 65

Test Procedure

- For non-FHSS equipment, having more than one operating channel, the operating channels on which the testing has to be performed shall be selected as follows:
- For testing blocking frequencies less than 2 400 MHz, the equipment shall operate on the lowest operating channel.
- For testing blocking frequencies greater than 2 500 MHz, the equipment shall operate on the highest operating channel.
- The simplified conducted measure procedures are as follows:
- 1) For non-FHSS equipment, the UUT shall be set to the lowest operating channel on which the blocking test has to be performed.
- 2) The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.
- 3) With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup. The level of the wanted signal shall be set to the value provided in the table corresponding to the receiver category and type of equipment. This level may be measured directly at the output of the companion device and a correction is made for the coupling loss into the UUT. The actual level for the wanted signal shall be recorded in the test report.
- 4) The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the performance criteria is met.
- 5) Repeat step 4 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.
- 6) Repeat step 2 to step 5 with the UUT operating at the highest operating channel.

Page 62 of 65

Test Result

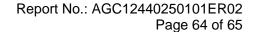

Test Temperature	24.8 °C	Relative Humidity	44 %
Test Engineer	Icey Huang	Testing Time	2025-02-20

Test Data of Receiver Blocking						
Test Condition	Blocking Signal Frequency (MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result
	2 300	-32.80	-58.46	0.56%	10%	Pass
GFSK	2 380	-32.80	-58.46	0.32%	10%	Pass
Hopping Mode	2 504	-32.80	-58.46	0.14%	10%	Pass
IVIOGE	2 584	-32.80	-58.46	0.22%	10%	Pass

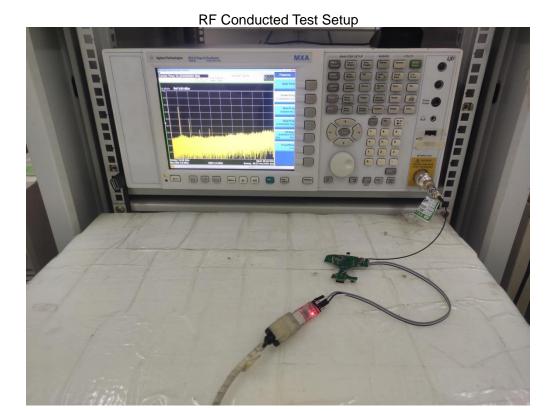
Test Data of Receiver Blocking						
Test Condition	Blocking Signal Frequency (MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result
π	2 300	-32.80	-57.04	0.36%	10%	Pass
/4-DQPSK	2 380	-32.80	-57.04	0.14%	10%	Pass
Hopping	2 504	-32.80	-57.04	0.36%	10%	Pass
Mode	2 584	-32.80	-57.04	0.19%	10%	Pass

Test Data of Receiver Blocking							
Test Condition	Blocking Signal Frequency (MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result	
	2 300	-32.80	-57.02	0.42%	10%	Pass	
8DPSK	2 380	-32.80	-57.02	0.59%	10%	Pass	
Hopping Mode	2 504	-32.80	-57.02	0.17%	10%	Pass	
	2 584	-32.80	-57.02	0.36%	10%	Pass	

Note: The levels of the blocking signal and wanted signal have to be corrected for the (in-band) antenna assembly gain.


Appendix I: Photographs of Test Setup

Radiated Spurious Emissions Below 1GHz Test Setup



Radiated Spurious Emissions Above 1GHz Test Setup

Page 65 of 65

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC12440250101AP01

----End of Report----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.

Radio Test Report

Report No.: AGC12440250101ER03

PRODUCT DESIGNATION: WIRELESS SPEAKER

BRAND NAME : N/A

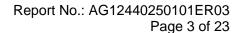
MODEL NAME : M06819, M06818

APPLICANT: MID OCEAN BRANDS B.V.

DATE OF ISSUE : Feb. 24, 2025

STANDARD(S) : ETSI EN 303 345-1 V1.1.1 (2019-06) ETSI EN 303 345-3 V1.1.1 (2021-06)

REPORT VERSION: V1.0


Attestation of Global Compliance (Shenzhen) Co., Ltd

Page 2 of 23

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Feb. 24, 2025	Valid	Initial Release

Table of Contents

1. General Information	4
2. Product Information	5
2.1 Product Technical Description	5
2.2 Objective	6
2.3 Test Items and The Results	6
2.4 Description of Test Modes	6
2.5 Test Signal Configurations	6
3. Setup of Equipment Under Test	7
3.1 Setup Configuration of EUT	7
3.2 Support Equipment	7
4. Test Environment	8
4.1 Address of The Test Laboratory	8
4.2 Test Facility	8
4.3 Environmental Conditions	9
4.4 Measurement Uncertainty	9
4.5 List of Equipment Used	10
5. ETSI EN 303 345 Requirements for Receiver	11
5.1 Sensitivity	11
5.2 Adjacent Channel Selectivity and Blocking	13
5.3 Unwanted Emissions in the Spurious Domain	17
Appendix I: Photographs of Test Setup	22
Appendix II: Photographs of Test EUT	23

Page 4 of 23

1. General Information

Applicant	MID OCEAN BRANDS B.V.
Address	7/F., King Tower, 111King Lam Street, Cheung ShaWan, Kowloon, Hong Kong.
Manufacturer	MID OCEAN BRANDS B.V.
Address	7/F., King Tower, 111King Lam Street, Cheung ShaWan, Kowloon, Hong Kong.
Factory	MID OCEAN BRANDS B.V.
Address	7/F., King Tower, 111King Lam Street, Cheung ShaWan, Kowloon, Hong Kong.
Product Designation	WIRELESS SPEAKER
Brand Name	N/A
Test Model	MO6819
Series Model(s)	MO6818
Difference Description	All are the same except for the appearance material
Date of receipt of test item	Jan. 17, 2025
Date of Test	Jan. 17, 2025~Feb. 24, 2025
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-EU-FMR3-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By	Thea Huang	
	Thea Huang (Project Engineer)	Feb. 24, 2025
Reviewed By	Calin Lin	
	Calvin Liu (Reviewer)	Feb. 24, 2025
Approved By	Angole Li	
	Angela Li (Authorized Officer)	Feb. 24, 2025

Page 5 of 23

2. Product Information

2.1 Product Technical Description

	□VHF band I: 47MHz to 68MHz (FM)	
	⊠VHF band II: 87.5 MHz to 108 MHz (FM)	
Operation Frequency Bango	☐VHF band III: 174 MHz to 240 MHz (DAB)	
Operation Frequency Range	Low frequency (LF): 148.5 kHz to 283.5 kHz (FM)	
	Medium frequency (MF): 526.5 kHz to 1606.5 kHz (AM)	
	☐High frequency (HF): 3.95MHz to 26.1MHz (FM)	
Hardware Version	V2.0	
Software Version	ac696n_soundbox_sdk_v1.6.0	
Modulation Method	⊠Frequency modulation (FM)	
Modulation Method	☐Amplitude Modulation (AM)	
Operation Mode	Receive only mode	
Antenna Designation	⊠Integral antenna □Built-in antenna □External antenna	
Power Supply	DC 5V from Adapter and DC 3.7V, 300mAh by Battery	

Note: For more details, refer to the user's manual of the EUT.

Page 6 of 23

2.2 Objective

Perform Radio Spectrum tests for CE Marking according to the provisions of article 3.2 of the Radio Equipment Directive (2014/53/EU) for the Broadcast Sound Receivers Function of the EUT.

2.3 Test Items and The Results

The tests were performed according to following standards:

ETSI EN 303 345-1 V1.1.1 (2019-06)	Broadcast Sound Receivers; Part 1: Generic requirements and measuring methods
ETSI EN 303 345-3 V1.1.1 (2021-06)	Broadcast Sound Receivers; Part 3: FM broadcast sound service; Harmonized Standard for access to radio spectrum

Test items and the results are as bellow:

No.	Test Item	Standard Require	Result
1	Sensitivity	EN 303 345-3 sub-clause 4.2	Pass
2	Adjacent channel selectivity and blocking	EN 303 345-3 sub-clause 4.3	Pass
3	Unwanted emissions in the spurious domain	EN 303 345-3 sub-clause 4.4	Pass

2.4 Description of Test Modes

No.	Test Mode Description
1	FM Receiving mode at 98MHz

2.5 Test Signal Configurations

The generated FM signals (wanted and unwanted) and the blocking signal shall be in accordance with table The configuration is based on Recommendation ITU-R BS.641.

Parameter	FM s	ignals	AM signal
Parameter	Wanted	Unwanted	Blocking
Audio modulation	1 kHz tone	Weighted noise Recommendation ITU-R BS.559-2, clause 1, band limited to 15 kHz (See note 1)	1 kHz tone
Other modulation parameters	±60,8 kHz peak deviation	15,9 kHz RMS deviation (See note 2)	80 % depth
Pilot tone	None	None	None

Note 1: The filter shall have a cut-off frequency of 15 kHz and a minimum roll-off of 60 dB/octave. Note 2: This is equivalent to a quasi-peak deviation of 34,8 kHz and has pre-emphasis enabled. The quasi-peak level measurement is defined by Recommendation ITU-R BS.641, clause 5; with pre-emphasis disabled the quasi-peak deviation is 32 kHz (14,5 kHz RMS).

Page 7 of 23

3. Setup of Equipment Under Test

3.1 Setup Configuration of EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

3.2 Support Equipment

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?						
No						
Item	Equipment	Trade Name	Model No.	Specification		
1						

Page 8 of 23

4. Test Environment

4.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

4.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

Page 9 of 23

4.3 Environmental Conditions

	Normal Conditions		
Temperature range (℃)	15 - 35		
Relative humidity range	20 % - 75 %		
Pressure range (kPa)	86 - 106		
Power supply	DC 3.7V		

4.4 Measurement Uncertainty

Test Items	Measurement Uncertainty	Notes
Sensitivity	±3.8dB	(1)
Adjacent channel selectivity and blocking	±3.8dB	(1)
Radiated Emissions: 30MHz-1GHz	±3.9dB	(1)
Radiated Emissions: Above 1GHz	±4.1dB	(1)

Note:

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Page 10 of 23

4.5 List of Equipment Used

• F	RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-ER-E059	Signal Generator	Agilent	N5182B	MY53050647	2025-01-14	2026-01-13	
\boxtimes	AGC-ER-E037	Signal Generator	Agilent	N5182A	MY50140530	2024-05-23	2025-05-22	
	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04	
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10	
\boxtimes	AGC-ER-A004	Power splitter	Agilent	1167B	/	2024-05-30	2025-05-29	
\boxtimes	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A	
\boxtimes	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A	

• F	Radiated Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23		
	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27		
	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10		
	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-03-31	2025-03-30		
	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2024-07-24	2026-07-23		
\boxtimes	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	N/A	N/A		

• Tes	Test Software							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information			
	AGC-EM-S004	RE Test System	Tonscend	TS ⁺ Ver2.1(JS32-RE)	4.0.0.0			
	AGC-EM-S003	RE Test System	FARA	EZ-EMC	V.RA-03A			

5. ETSI EN 303 345 Requirements for Receiver

5.1 Sensitivity

The receiver sensitivity is the minimum wanted signal level required to provide a given level of audio quality.

Test Limit

FM: the limits for sensitivity specified in the table shall apply. Each figure quoted is the required level of wanted signal which provides a given level of audio quality. The audio impairment criteria relevant for these tests is that the audio SNR ≥ 40dBQ ref ±60,8 kHz deviation, and that there shall be 10 seconds of audio with no subjective impairments (e.g. clicks resulting from FM threshold effects).

FM sensitivity requirements

		Tuned frequency	Wanted signal	Required sensitivity limit				
	De-modulation	band	Centre frequency (MHz)	Conducted (dBm)	Radiated (dB µ V/m)			
FM VHF band II 98 -90 50 (see note)								
	Note: For products with an integral antenna, the requirement is releved to 67dRu\//m							

Note: For products with an integral antenna, the requirement is relaxed to 67dBµV/m.

Test Setup

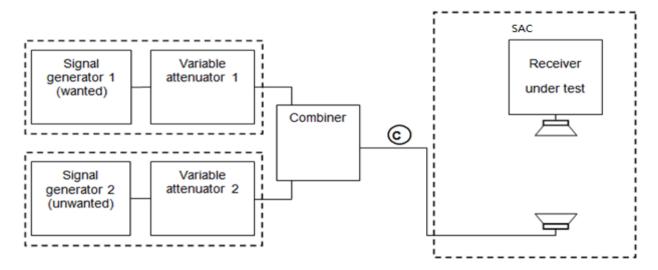


Figure 1: Generic measurement arrangement for receivers with built-in or integral antennas

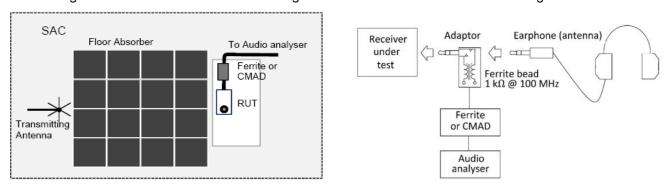


Figure B.1: Example set-up for electrical method (top view) Figure 4: Example adaptor for products using earphone as antenna Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd

Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 12 of 23

Test Procedure

■ FM&AM test method is as follows:

- 1. For radiated testing, the EUT is placed in semi anechoic chamber (SAC). The field strength generated by the signal generator applying to the EUT at 3 meters distance from the antenna is pre-calibrated before testing.
- 2. The 'unwanted' signal generator remains switched off for the duration of the test.
- 3. The 'wanted' signal generator is set to the required modulation method and test configuration as specified, and to the frequency specified. The signal level is adjusted to provide the level, as measured at ©, specified plus 30dB.
- 4. The receiver (EUT) is tuned to the frequency of the 'wanted' signal generator. The audio level shall be set so as to provide clean 1 kHz audio tone at the audio output (that is less than 10 % total harmonic distortion) but of sufficient level to drive the measurement device.
- 5. The level of the 'wanted' signal generator is adjusted to provide the level, as measured at ©
- 6. The audio output, measured using the measurement device, is recorded as the signal level, S.
- 7. The modulating audio signal for the 'wanted' signal generator is removed. The audio output, measured using the measurement device, is recorded as the noise level, N.
- 8. If the impairment criteria given are met then the receiver has passed the test.

Test Result

FM VHF band II 98MHz (⊠Integral antenna ☐Built-in antenna ☐External antenna)							
Wanted Signal Level at © (dBµV/m)	S (mV)	N (mV)	SNR (dBQ)	Limit (dBQ)	Result		
67	43.56	0.08	54.72	≥ 40	Pass		

Page 13 of 23

5.2 Adjacent Channel Selectivity and Blocking

The adjacent channel selectivity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted signal which differs in frequency from the wanted signal by an amount equal to a small multiple of the adjacent channel spacing. The wanted and unwanted signals are of the same modulation type.

The blocking ratio is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted input signal at a given frequency separation. The wanted and unwanted signals are of different modulation types.

Test Limit

• FM:

The limits for selectivity and blocking specified in the first table shall apply with the channel spacings given in the second table. Each figure quoted is the minimum acceptable level of unwanted signal, relative to that of the wanted signal, which provides a given level of audio quality. The audio impairment criteria relevant for these tests is that the audio SNR \geq 40 dBQ ref ±60,8 kHz deviation, and that there shall be 10 seconds of audio with no subjective impairments (e.g. clicks resulting from FM threshold effects).

Channel spacing for adjacent channel selectivity and blocking

	3		· ·	
Demodulation	Tuned frequency	Unwanted frequency	Unwanted frequency	
Demodulation	band	(N = 2, 3, 4)	(blocking)	
FM	VHF band II	±N × 100 kHz	±800 kHz	

Adjacent channel selectivity and blocking requirements

rajaconi enamine colocitity and blocking requiremente								
Domodulation	Tuned	C Wanted	Wanted s	Required I/C ratio (see notes 2 and 3)				
Demodulation (see note 1)	frequency band	signal center frequency (MHz)	Conducted (dBm)	Radiated (dBµV/m)	N = 2 (dB)	N = 3 (dB)	N = 4 (dB)	Blocking (dB)
FM (built-in or integral antenna)	VHF band II	98	n/a	56 (see note 4)	-15	-3	8	20
FM (external antenna)	VHF band II	98	-84	n/a	3	17	30	30

Note 1: The ACS and blocking requirements are currently separated into different limits for radiated and conducted testing methods. These limits are likely to be unified in a future revision of the present document. Users of the present document should consult frequently the latest list published in the Official Journal of the European Union. Note 2: The frequency of the interferer shall be calculated using the channel spacing data in table 3 for each of the 6 defined adjacent channels $N = \{-4, -3, -2, +2, +3, +4\}$ and the two blocking offsets. Each row of table 4 thus defines 8 individual tests.

Note 3: The minimum level of I for the relevant level of impairment is calculated by adding the I/C ratio to the wanted C level.

Note 4: The wanted signal level for receivers with integral antenna is 73 dBµV/m.

Test Setup

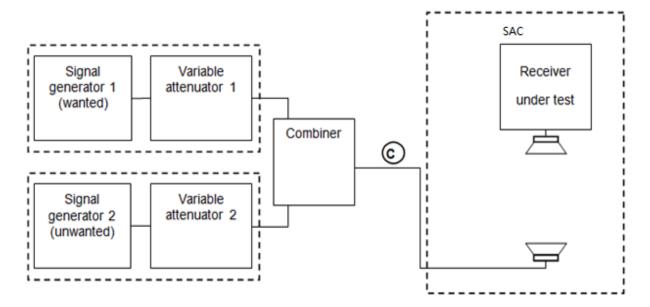


Figure 1: Generic measurement arrangement for receivers with built-in or integral antennas

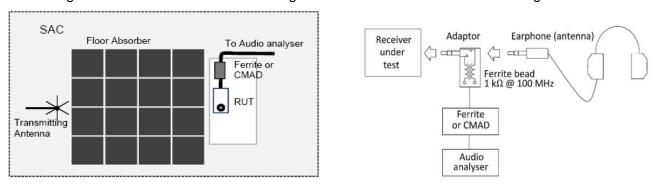


Figure B.1: Example set-up for electrical method (top view) Figure 4: Example adaptor for products using earphone as antenna

Page 15 of 23

Test Procedure

■ FM test method is as follows:

- For radiated testing, the EUT is placed in semi anechoic chamber (SAC). The field strength generated by the signal generator applying to the EUT at 3 meters distance from the antenna is pre-calibrated before testing.
- 2. The 'wanted' signal generator is set to the required modulation method and test configuration as specified, and to the frequency specified. The signal level is adjusted to provide the level, as measured at ©, specified in above table, with the 'unwanted' generator switched off
- 3. The receiver (EUT) is tuned to the frequency of the 'wanted' signal generator. The audio level shall be set so as to provide clean 1 kHz audio tone at the audio output (that is less than 10 % total harmonic distortion) but of sufficient level to drive the measurement device.
- 4. The 'unwanted' signal generator is set to the required modulation method and test configuration as specified. and to the frequency calculated from the wanted signal center frequency and the required offset specified in above Table. The signal level is adjusted to provide the level, as measured at ©, specified in above Table, with the 'wanted' generator switched off. For the blocking test only, the audio modulation of the 'unwanted' signal shall be removed whilst measuring the level at ©.
- 5. The 'wanted' signal generator is switched back on.
- The audio output, measured using the measurement device, is recorded as the signal level, S.
- 7. The modulating audio signal for the 'wanted' signal generator is removed. The audio output, measured using the measurement device, is recorded as the noise level, N.
- 8. If the impairment criteria given are met then the receiver has passed the test.

Page 16 of 23

Test Result

FN	FM VHF band II 98MHz (⊠Integral antenna ☐Built-in antenna ☐External antenna)									
Adjacency and Blocking	C Wanted signal level at © (dBµV/m)	I Unwanted Signal Level at © (dBµV/m)	Required I/C ratio(dB)	S (mV)	N (mV)	SNR (dBQ)	Limit (dBQ)	Result		
97.8 MHz	73	58	-15	42.63	0.08	54.53	≥ 40	Pass		
98.2 MHz	73	58	-15	42.63	0.08	54.53	≥ 40	Pass		
97.7 MHz	73	70	-3	42.63	0.08	54.53	≥ 40	Pass		
98.3 MHz	73	70	-3	42.63	0.08	54.53	≥ 40	Pass		
97.6 MHz	73	81	8	42.63	0.08	54.53	≥ 40	Pass		
98.4 MHz	73	81	8	42.63	0.08	54.53	≥ 40	Pass		
97.2 MHz	73	93	20	42.63	0.08	54.53	≥ 40	Pass		
98.8 MHz	73	93	20	42.63	0.08	54.53	≥ 40	Pass		

Page 17 of 23

5.3 Unwanted Emissions in the Spurious Domain

Spurious domain radiated and conducted (differential voltage) emissions from the equipment.

Test Limit

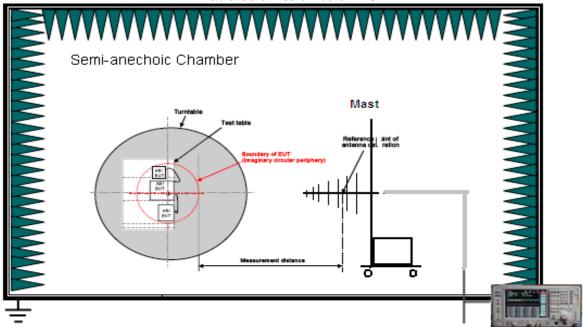
Limits for radiated emission 30MHz to 1 GHz at a measurement distance of 3 m

Frequency range (MHz)	Class B limits dB(µV/m)		
30 to 230	40		
230 to 1000	47		

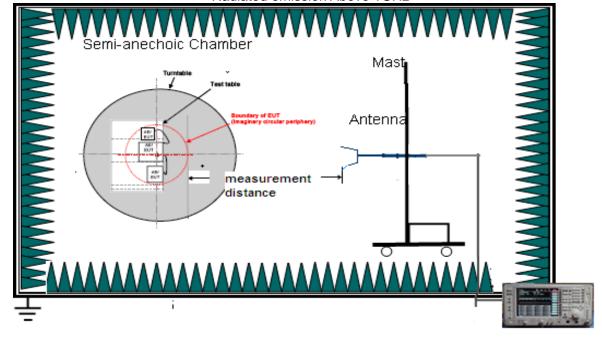
Limits for radiated emission above 1 GHz at a measurement distance of 3 m

Frequency (MHz)	Class B limits dB(μV/m)	
rioquoney (minz)	Peak	Average
1000 to 3000	70	50
3000 to 6000	74	54

Limits for radiated emission from FM receivers at a measurement distance of 3 m


Frequency (MHz)	Class B limits dB(µV/m)	
roqueriey (iiii iz)	Fundamental	Harmonics
30 to 230		52
230 to 300	60	52
300 to 1 000		56

Note: These relaxed limits apply only to emissions at the fundamental and harmonic frequencies of the LO. Signals at all other frequencies shall be compliant with the limits given in the above tables.



Test Setup

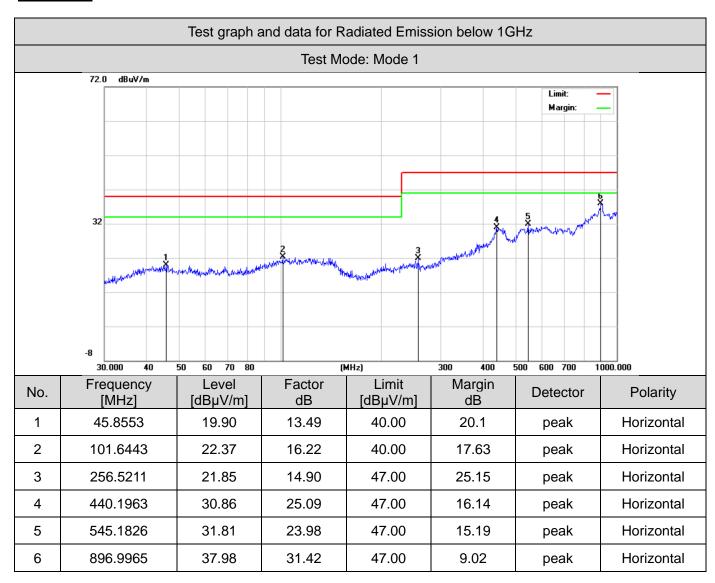
Radiated emission below 1GHz

Radiated emission Above 1GHz

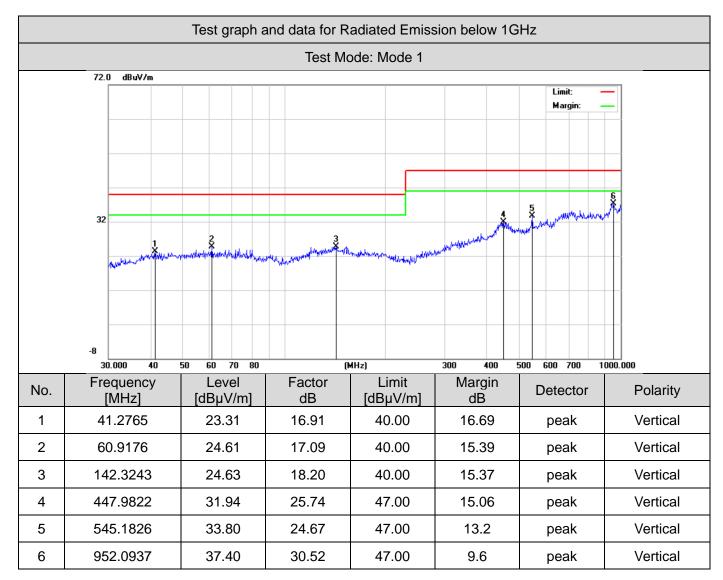
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

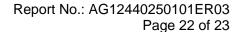
Page 19 of 23


Test Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per EN 55032 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 10cm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per EN 55032.
- 3. All I/O cables were positioned to simulate typical actual usage as per EN 55032.
- 4. The EUT was operated in the selected mode(s) while the ports are exercised in accordance with Clause 2.
- 5. The antenna was placed at 3 meters away from the EUT as stated in EN 55032. The antenna connected to the Analyzer via a cable and at times a pre-amplifier would be used.
- 6. The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- 7. The test mode(s) were scanned during the test:
- 8. Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and Q.P./Peak reading is presented.


Page 20 of 23

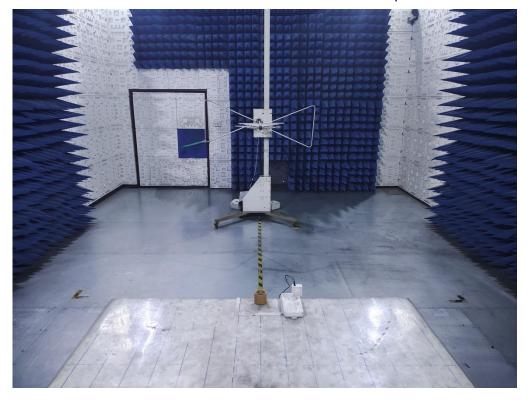
Test Result


Page 21 of 23

Result: Pass

Note:

- 1. Margin = Limit Level; Factor = Cable Loss + Antenna Factor.
- 2. The highest internal frequency of EUT is not more than 108MHz, so the highest measured frequency is 1GHz for radiated emission.



Appendix I: Photographs of Test Setup

Sensitivity, Adjacent channel selectivity and blocking Test Setup

Radiated Emissions Below 1GHz Test Setup

Page 23 of 23

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC12440250101AP01

----End of Report-----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.

Health Test Report

Report No.: AGC12440250101EH01

PRODUCT DESIGNATION: WIRELESS SPEAKER

BRAND NAME : N/A

MODEL NAME : M06819, M06818

APPLICANT: MID OCEAN BRANDS B.V.

DATE OF ISSUE : Feb. 24, 2025

STANDARD(S) : EN 62479:2010 EN 50663:2017

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

Page 2 of 7

Report Revise Record

Report Version	Revise Time	Issued Date	sued Date Valid Version Note	
V1.0	/	Feb. 24, 2025	Valid	Initial Release

Report No.: AGC12440250101EH01 Page 3 of 7

Table of Contents

l. General Information	
2. Product Information	
2.1 Product Technical Description	
3. Test Environment	
3.1 Address of The Test Laboratory	6
3.2 Test Facility	6
I. EN 62479 Requirements for Power Exemption	7
4.1 Evaluation Methodology	7
4.2 Evaluation Conclusion	7

Report No.: AGC12440250101EH01 Page 4 of 7

1. General Information

MID OCEAN BRANDS B.V.
7/F., King Tower, 111King Lam Street, Cheung ShaWan, Kowloon, Hong Kong.
MID OCEAN BRANDS B.V.
7/F., King Tower, 111King Lam Street, Cheung ShaWan, Kowloon, Hong Kong.
MID OCEAN BRANDS B.V.
7/F., King Tower, 111King Lam Street, Cheung ShaWan, Kowloon, Hong Kong.
WIRELESS SPEAKER
N/A
MO6819
MO6818
All are the same except for the appearance material
Jan. 17, 2025
Jan. 17, 2025~Feb. 24, 2025
No any deviation from the test method
Normal
Pass
AGCER-EU-Health/1-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By	Thea Yuang	
	Thea Huang (Project Engineer)	Feb. 24, 2025
Reviewed By	Colvin Lin	
	Calvin Liu (Reviewer)	Feb. 24, 2025
Approved By	Angole Li	
	Angela Li (Authorized Officer)	Feb. 24, 2025

Page 5 of 7

2. Product Information

2.1 Product Technical Description

Product Designation	WIRELESS SPEAKER		
Test Model	MO6819		
Hardware Version	V2.0		
Software Version	ac696n_soundbox_sdk_v1.6.0		
Power Supply	DC 5V from Adapter and DC 3.7V, 300mAh by Battery		
Classic Bluetooth Technical Parameters			
Operating Frequency	2402MHz-2480MHz		
Bluetooth Version	V5.3		
Modulation Type	⊠BR: GFSK ⊠EDR: π /4-DQPSK ⊠EDR: 8DPSK		
Number of channels	79 channels		
Antenna Designation	PCB Antenna		
Antenna Gain	1.2dBi		

Note:

- The above information was declared by the manufacturer.
- 2. The equipment submitted are representative production models.
- 3. For more details, please refer to the User's manual of the EUT.

Page 6 of 7

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

Page 7 of 7

4. EN 62479 Requirements for Exemption Assessment

4.1 Evaluation Methodology

Test Mode	Maximum Output Power (dBm)	Maximum Output Power (mW)	Limit (mW)	Verdict
BT_BR	-3.98	0.40	≤20	Pass

Note: The above maximum output power comes from the test report (AGC12440250101ER02)

4.2 Evaluation Conclusion

Remark: EUT meets the basic requirements in the standard.

----End of Report----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.