

TEST REPORT

Reference No	:	WTF24F11264300W002
Applicant	all's	Mid Ocean Brands B.V.

Address.....: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

Hong Kong

Manufacturer 114538

Address.....:: : ---

Product Name: Foldable charging station

Model No. : MO2145

Test specification..... : ETSI EN 300 330 V2.1.1 (2017-02)

Date of Test : 2024-11-18 **Date of Test** : 2024-11-27

Date of Issue..... : 2024-11-29

Test Report Form No.: WEW-300330A-01B

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: 1/F., Building 19, Sunlink Machinery City, Xingye 4 Road, Guanglong Industrial Park, Chihua Neighborhood Committee, Chencun Town, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Tested by: Approved by:

Roy Hong

Danny Zhou

1 Test Summary

Test Requirements						
Test	Test Method	Reference	Result			
Permitted range of operating frequency	ETSI EN 300 330 V2.1.1	4.3.1	Pass			
Operating frequency range	ETSI EN 300 330 V2.1.1	4.3.2	Pass			
Modulation bandwidth	ETSI EN 300 330 V2.1.1	4.3.3	Pass a			
Radiated H-field	ETSI EN 300 330 V2.1.1	4.3.4	Pass			
Radiated spurious emissions at frequencies below 30 MHz	ETSI EN 300 330 V2.1.1	4.3.8	Pass			
Radiated spurious emissions at frequencies above 30 MHz	ETSI EN 300 330 V2.1.1	4.3.9	Pass			
Receiver spurious emissions	ETSI EN 300 330 V2.1.1	4.4.2	N/A			
Adjacent channel selectivity	ETSI EN 300 330 V2.1.1	4.4.3	N/A			
Receiver blocking or desensitization	ETSI EN 300 330 V2.1.1	4.4.4	N/A			

Remark:

Pass Test item meets the requirement

N/A Not Applicable

a) According to standard section 4.4.1, this equipment belongs to other equipment (WPT system)

and only has a single working channel, so it is not necessary to meet section 4.3.3.

2 Contents

			Page
1		ST SUMMARY	
2	COI	NTENTS	3
3	GEN	NERAL INFORMATION	4
	3.1	GENERAL DESCRIPTION OF E.U.T.	4
	3.2	TECHNICAL SPECIFICATION	4
	3.3	STANDARDS APPLICABLE FOR TESTING	5
	3.4	TEST FACILITY	
	3.5	SUBCONTRACTED	
	3.6	ABNORMALITIES FROM STANDARD CONDITIONS	
	3.7	DISCLAIMER	6
4	EQU	JIPMENT USED DURING TEST	
	4.1	EQUIPMENT LIST	7
	4.2	SOFTWARE LIST	8
	4.3	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	8
	4.4	MEASUREMENT UNCERTAINTY	8
	4.5	DECISION RULE	8
5	PER	RMITTED RANGE OF OPERATING FREQUENCY	9
	5.1	STANDARD APPLICABLE	9
	5.2	TEST PROCEDURE	
	5.3	TEST CONDITION	
		TEST RESULT	
6	RAI	DIATED H-FIELD	11
	6.1	STANDARD APPLICABLE	11
	6.2	TEST PROCEDURE	12
	6.3	TEST CONDITION	
	6.4	TEST RESULT	13
7	RAI	DIATED SPURIOUS EMISSION BELOW 30MHZ	14
	7.1	STANDARD APPLICABLE	14
	7.2	TEST PROCEDURE	
	7.3	TEST CONDITION	14
	7.4	TEST RESULT	15
8	RAI	DIATED SPURIOUS EMISSION ABOVE 30MHZ	19
	8.1	STANDARD APPLICABLE	19
	8.2	TEST PROCEDURE	19
	8.3	TEST CONDITION	
	8.4	TEST RESULTS	20
9	PHO	DTOGRAPHS —TEST SETUP	22
	9.1	PHOTOGRAPH - SPURIOUS EMISSIONS RADIATED TEST SETUP	22
10	PHO	OTOGRAPHS – EUT CONSTRUCTIONAL DETAILS	23

Reference No.: WTF24F11264300W002

3 General Information

3.1 General Description of E.U.T.

Product Name: Foldable charging station

Model No.: MO2145

Remark: ---

Rating: Input: DC 9V/3A, DC 9V/2.22A, DC 5V/2A

Output: DC 5V/0.3A, DC 5V/1A, DC 9V/1.66A

Wireless output power:

Magnetic charging pad: Max 15W Apple Watch only: Max 1.5W Wireless charging pad: Max 5W

Power Adapter Model.....: : ---

Battery Capacity: : ---

3.2 Technical Specification

Permitted Range of Operating Frequency: 148.5 kHz to 5MHz

(Manufacturer's declared frequency of product operation: 325kHz – 330kHz for the apple watch

charging pad)

Operating Frequency: 326.5kHz

Radiated H-Field: 11.43dBuA/m(@3m) for apple watch charging pad

Antenna installation: Coil Antenna

Antenna Gain : 0dBi

Product Class: 1

Product Class	Description of transmitter	Antenna to be tested	Frequenc y range	Loop antenna area	antanna	Customization of antenna design allowed	Transmitter carrier Output limits	Spurious emissions limits
et mairet mairet martet	Inductive loop coil transmitter	Integral antenna (antenna type 1) or dedicated antenna supplied with the equipment (antenna type 2); (see note 1)		< 30m²	< \(\lambda/4\) (75metre s/f where f is in MHz)or <30m, whichever is shorter	No	H-field at 10m	H-field at 10m

121

	2	Inductive loop coil transmitter	Two representative Antennas supplied with the equipment (see note 2)	9kHz to 30MHz	< 30m²	< \(\lambda / 4 \) (75metre s/f where f is in MHz)or < 30m, whichever is shorter	Yes (see note 3)	H-field at 10m	H-field at 10m
ansi Se	3	Customize d large size loop antennas only	Test without an antenna by using an artificial antenna	9kHz to 135kHz	>30m²	n.a	Yes	Current in artificial antenna	Current in artificial antenna
	4	E-field transmitter	Each type of antenna to be used	9kHz to 30MHz	n.a	n.a	n.a	H-field at 10m	H-field at 10m

- NOTE 1: Where a manufacturer provides a range of standard antennas, the equipment will be tested as Product Class 1 equipment, with the antenna(s) attached. The measurements shall be repeated for each antenna.
- NOTE 2: The two antennas shall meet the manufacturer's design rules published in the equipment manual and shall have maximum and minimum loop areas respectively. Both antennas shall have the maximum magnetic dipole moment as declared by the manufacturer.
- NOTE 3: Customization is only allowed according to the manufacturer's antenna design rules published in the equipment manual.
- NOTE 4: On-site measurements may be required.

3.3 Standards Applicable for Testing

The tests were performed according to following standards:

ETSI EN 300 330 V2.1.1 (2017-02)

Short Range Devices (SRD); Radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU.

3.4 Test Facility

The test facility has a test site registered with the following organizations:

ISED – Registration No.: 21895

Waltek Testing Group (Foshan) Co., Ltd. has been registered and fully described in a report filed with the Innovation, Science an Economic Development Canada(ISED). The acceptance letter from the ISED is maintained in our files. Registration ISED number:21895, March 12, 2019

FCC – Registration No.: 820106

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 820106, August 16, 2018

NVLAP – Lab Code: 600191-0

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 600191-0.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

3.5 Subcontracted

Whether parts of tests for the product have been subcontracted to other labs:
☐ Yes ☐ No
If Yes, list the related test items and lab information:
Test items:
Lab information:

3.6 Abnormalities from Standard Conditions

None.

3.7 Disclaimer

The antenna gain information is provided by the customer. The laboratory is not responsible for the accuracy of the antenna gain information.

WALTEK

4 Equipment Used during Test

4.1 Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	3m Semi-anechoic Chamber	CHANGCHUANG	9m×6m×6m	eter _{wit} eter w	2024-01-05	2025-01-04
2	EMI TEST RECEIVER	RS	ESR7	101566	2024-01-06	2025-01-05
3	Spectrum Analyzer	Agilent	N9020A	MY48011796	2024-01-04	2025-01-03
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9162	9162-117	2024-01-05	2025-01-04
5	Coaxial Cable (below 1GHz)	H+S	CBL3-NN- 12+3 m	214NN320	2024-01-06	2025-01-05
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	01561	2024-01-05	2025-01-04
7	Broadband Preamplifier (Above 1GHz)	Lunar E M	LNA1G18-40	20160501002	2024-01-04	2025-01-03
8	Coaxial Cable (above 1GHz)	Times-Micorwave	CBL5-NN	MULT MUL	2024-01-04	2025-01-03

⊠RF Conducted test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
<u>1</u>	Environmental Chamber	GERUI	GR-HWS- 1000L	GR24061818	2024-07-02	2025-07-01
2	Spectrum Analyzer	Agilent	N9020A	MY48011796	2024-01-04	2025-01-03
3	EXG Analog Signal Generator	Agilent	N5181A	MY48180720	2024-01-04	2025-01-03
4	RF Control Unit	CHANGCHUANG	JS0806-2	A ST	2024-01-04	2025-01-03

: Not Used

⊠: Used

4.2 Software List

Description	Manufacturer	Model	Version
EMI Test Software (Radiated Emission)	FARATRONIC	EZ-EMC	RA-03A1-2
RF Conducted Test	TONSCEND	JS1120-2	2.6

4.3 Special Accessories and Auxiliary Equipment

Item	Equipment	Technical Data	Manufacturer	Model No.	Serial No.
1.	white forms of	- Mr - Mr	L A	A 1 St	of the rest of mother.

4.4 Measurement Uncertainty

Parameter	Uncertainty	Note
RF Output Power	±2.2dB	(1)
Occupied Bandwidth	±1.5%	(1)
Table with a Country of Country of	±3.8dB (for 25MHz-1GHz)	(1)
Transmitter Spurious Emission	±5.0dB (for 1GHz-18GHz)	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.5 Decision Rule

Compliance or non-compliance with a disturbance limit shall be determined in the following manner.

If U_{LAB} is less than or equal to U_{cispr} , then

- -Compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- -Non-compliance is deemed to occur is any measured disturbance level exceeds the disturbance limt.

If U_{LAB} is greater than U_{cispr} , then

- -Compliance is deemed to occur if no measured disturbance level, increased by $(U_{LAB}-U_{Cispr})$, exceeds the disturbance limit;
- -Non-compliance is deemed to occur if any measured disturbance level, increased by $(U_{LAB}-U_{cispr})$, exceeds the disturbance limit.

5 Permitted Range of Operating Frequency

5.1 Standard Applicable

1. Permitted range of operating frequencies

According to EN 300330 section 4.3.1, The permitted range of operating frequencies is the frequency range over which the equipment is authorized to operate.

2. Operating frequency range

The operating frequency range (OFR) is the frequency range over which the EUT is transmitting. The operating frequency range of the EUT is determined by the lowest (fL) and highest frequency (fH) as occupied by the power envelope.

With the centre frequency of the OFR as: $F_C = (F_H + F_L)/2$.

An EUT could have more than one operating frequency range

5.2 Test Procedure

The permitted range of operating frequencies used by the EUT shall be declared by the manufacturer. The operating frequency range(s) will be tested considered under in clause 4.3.2.

The operating frequency ranges for intentional emissions shall be entirely within the frequency bands in table 1.

Table 1: Short Range Devices within the 9 kHz to 30 MHz permitted frequency bands

	Frequency Bands/frequencies	Applications
Transmit and Receive	9 kHz to 90 kHz	Inductive devices, Generic use
Transmit and Receive	90 kHz to 119 kHz	Inductive devices, Generic use
Transmit and Receive	119 kHz to 140 kHz	Inductive devices, Generic use
Transmit and Receive 140 kHz to 148,5 kHz		Inductive devices, Generic use
Transmit and Receive	148,5 kHz to 5 MHz	Inductive devices, Generic use
Transmit and Receive	400 kHz to 600 kHz	RFID only
Transmit and Receive	5 MHz to 30 MHz	Inductive devices, Generic use
Transmit and Receive	3 155 kHz to 3 400 kHz	Inductive devices, Generic use
Transmit and Receive	984 kHz to 7 484 kHz (Note 3, Centre frequency is 4 234 kHz)	Inductive devices, Railway applications
Transmit and Receive	4 516 kHz	Inductive devices, Railway applications
Transmit and Receive	6 765 kHz to 6 795 kHz	Inductive devices, Generic use
Transmit and Receive	7 400 kHz to 8 800 kHz	Inductive devices, Generic use
Transmit and Receive	10 200 kHz to 11,000 MHz	Inductive devices, Generic use
Transmit and Receive	11,810 MHz to 15,310 MHz (Centre frequency is 13,56 MHz)	RFID only
Transmit and Receive	12,5 MHz to 20 MHz	Inductive devices, Wireless healthcare
Transmit and Receive	13,553 MHz to 13,567 MHz	Inductive devices, Generic use
Transmit and Receive	26,957 MHz to 27,283 MHz	Inductive devices, Generic use
		Inductive devices, Railway applications

Page 10 of 23

Reference No.: WTF24F11264300W002 Page

NOTE 1: In addition, it should be noted that other frequency bands may be available in a country within the frequency range 9 kHz to 30 MHz.

NOTE 2: On non-harmonised parameters, national administrations may impose certain conditions such as the type of modulation, frequency, channel/frequency separations, maximum transmitter radiated power, duty cycle, and the inclusion of an automatic transmitter shut-off facility, as a condition for the issue of an Individual Rights for

use of spectrum or General Authorization, or as a condition for use under "licence exemption" as it is in most cases for Short Range Devices.

NOTE 3: Transmitting only on receipt of a Balise/Eurobalise tele-powering signal from a train.

5.3 Test Condition

Operating Mode: TX mode

Test Environment: Normal Condition, Extreme Condition

Test Voltage : DC 8.1V to 9.9V

Ambient temperature: 25°C

Humidity: 54%RH

Atmospheric Pressure: 101.2kPa

Test Condition Normal NTNV		Test Temperature	Test Voltage (Vdc)	
		25°C		
20	LTLV	0°C	8.1	
White wh	LTHV	0°C	9.9	
Extreme	HTLV	40°C	8.1	
ε 2η -	HTHV	40°C	9.9	

5.4 Test Result

Test Condition	Lower Frequency (kHz)	Upper Frequency (kHz)	Limit
NTNV	325.116	327.421	RITER MILIER WHITE WHITE WHITE
LTLV	325.125	327.409	at yet yet lifet slight
LTHV	325.123	327.408	Low Frequency≥148.5kHz Upper Frequency:≤5000kHz
HTLV	325.131	327.416	MALTER MALTER MALTER MALTER MA
HTHV	325.127	327.421	tet tet stet stet still sei
Results	THE STEP STRUCTOR	Pass	an an an a

6 Radiated H-Field

6.1 Standard Applicable

The Transmitter H-field requirements only applies for equipment under product class 1 and class 2 as defined in clause 6.1.2 and clause B.2.

The frequency ranges and limits of the present document are shown in table 2. The limits are based on the European Commission Decision for SRDs [i.10], CEPT/ERC/REC 70-03 [i.1].

Table 2: H-field limits at 10 m

Frequency range (MHz)	H-field strength limit (Hf) dBµA/m at 10 m or specified in mW e.r.p.				
0,009 ≤ f < 0,090	72 descending 3 dB/oct above 0,03 MHz or according note 1(see note 5)				
0,09 ≤ f < 0,119	42				
0,119 ≤ f < 0,135	66 descending 3 dB/oct above 0,119 MHz or according to note 1(see notes 3 and 5)				
0,135 ≤ f < 0,140	42				
0,140 ≤ f < 0,1485	37,7				
0,1485 ≤ f < 30	-5 (see note 4)				
0,315 ≤ f < 0,600	THE THE STATE OF THE SHALL WAS A				
3,155≤ f < 3,400	13,5				
4,234	9 (see note 9)				
4,516	7 + 1 1				
7,400 ≤ f < 8,800	9 41 41				
10,2 ≤ f < 11,00	9				
12,5 f 20	- John John Mill John John John John John John John John				
6,765 ≤ f ≤ 6,795	42 (see notes 3 and 7)				
26,957 ≤ f ≤ 27,283	42 (see note 3)				
13,410 ≤ f ≤13,553, 13,567 ≤ f ≤ 13,710	9 (see note 6)				
$13,110 \le f \le 13,410, \ 13,710 \le f \le 14,010$	-3,5 (see note 6)				
$12,660 \le f \le 13,110, 14,010 \le f \le 14,460$	-10 (see note 6)				
11,810 ≤ f ≤ 12,660, 14,460 ≤ f ≤ 15,310	-16 (see note 6)				
13,460 ≤ f ≤ 13,553, 13,567 ≤ f ≤ 13,660	27 (see note 6)				
13,360 ≤ f ≤ 13,460, 13,660 ≤ f ≤ 13,760	Linear transition from 27 to -3,5 (see note 6)				
13,110 ≤ f ≤ 13,360, 13,760 ≤ f ≤ 14,010	-3,5 (see note 6)				
$12,660 \le f \le 13,110, 14,010 \le f \le 14,460$	-5 (see note 6)				
13,553 ≤ f ≤ 13,567	42 (see note 3) or 60 (see notes 2 and 3)				
27,095	42				

Frequency range (MHz)	H-field strength limit (Hf) dBµA/m at 10 m or specified in mW e.r.p.
26,995, 27,045, 27,095, 27,145, 27,195 (see note 8)	100 mW

NOTE 1:For the frequency ranges 9 kHz to 135 kHz, the following additional restrictions apply to limits above 42 dBμA/m:

-for loop coil antennas with an area $\ge 0,16 \text{ m}^2$ this table and table B.1 with the antenna limitations apply;

-for loop coil antennas with an area between 0,05 m² and 0,16 m² table B.1 applies with a correction factor.

The limit is: table value + 10 \times log (area/0,16 m²);

-for loop coil antennas with an area < 0,05 m2 the limit is 10 dB below table B.1.

NOTE 2: For RFID (incl. NFC) and EAS applications only.

NOTE 3: Spectrum mask limit, see annex I.

NOTE 4: For further information see annex G.

NOTE 5: Limit is 42 dBµA/m for the following spot frequencies:

60 kHz \pm 250 Hz, 66,6 kHz \pm 750 Hz, 75 kHz \pm 250 Hz, 77,5 kHz \pm 250 Hz, and 129,1 kHz \pm 500 Hz.

NOTE 6: Only in conjunction with spectrum mask, see annex I.

NOTE 7: The frequency range 6,765 MHz - 6,795 MHz is not a harmonised ISM frequency band according article 5.138 of the ITU Radio Regulations [i.13].

NOTE 8: Center frequencies for channelized systems by using ≤ 10 kHz bandwidth.

NOTE 9:The limit is valid in the range 984 kHz - 7 484 kHz for Transmitting only on receipt of a Balise/Eurobalise tele-powering signal from a train.

6.2 Test Procedure

The measurements of the transmitter radiated H-field shall be made on an open field test site as specified in clause C.1.3. Any measured values shall be at least 6 dB above the ambient noise level.

The H-field produced by the equipment shall be measured at standard distance of 10 m. Where this is not practical, e.g. due to physical size of the equipment including the antenna or with use of special field cancelling antenna, then other distances may be used. When another distance is used, the distance used and the field strength value measured shall be stated in the test report. In this case, the measured value at actual test distance shall be extrapolated to 10 m according to annex H and these calculations shall be stated in the test report.

The H-field is measured with a shielded loop antenna connected to a measurement receiver. The measuring bandwidth and detector type of the measurement receiver shall be in accordance with clause 5.12.

The equipment under test shall operate where possible, with modulation. Where this is not possible, it shall be stated in the test report.

For transmitters using a continuous wideband swept carrier, the measurement shall be made with the sweep off. When it is not possible to turn the sweep off the measurements shall be made with the sweep on and this shall be stated in the test report.

For measuring equipment calibrated in dBμV/m, the reading should be reduced by 51,5 dB to be converted to dBμA/m.

Reference No.: WTF24F11264300W002 Page 13 of 23

6.3 Test Condition

Operating Mode: TX mode

Test Environment: Normal Condition, Extreme Condition

Test Voltage : DC 8.1V to 9.9V

Ambient temperature: 25°C

Humidity: 54%RH

Atmospheric Pressure: 101.2kPa

Test	Condition	Test Temperature	Test Voltage (Vdc)		
Normal	NTNV (worst case)	25°C	9.0		
	LTLV	0°C	8.1		
Cutuana Mari	LTHV	0°C	9.9		
Extreme	HTLV	40°C	8.1		
	HTHV	40°C	9.9		

6.4 Test Result

Frequenc (kHz)	y Level (dBuA/m)@3m	C3 Factor (dB)	Level (dBuA/m)@10m	Limit (dBuA/m)@10m	Result
326.5	11.43	31.65	-20.22	66	Pass

Note 1: Pre-scan EUT X,Y,Z axis,and find the worst case at X axis.

Note 2: H_{3m}=H_{10m}+C₃ refer to ETSI EN300 330 Annex H.2

Note 3: All extreme conditions were considered for test, but only record the worst case.

7 Radiated Spurious Emission Below 30MHz

7.1 Standard Applicable

According to EN 300330 section 4.3.8, the radiated field strength of the spurious domain emissions below 30 MHz shall not exceed the generated H-field dBµA/m at 10 m given in table 5.

State	Frequency 9 kHz ≤ f < 10 MHz	Frequency 10 MHz ≤ f < 30 MHz
Operating	27 dBµA/m at 9 kHz descending 3 dB/oct	-3,5 dBμA/m
Standby	5,5 dBµA/m at 9 kHz descending 3 dB/oct	-25 dBµA/m

7.2 Test Procedure

The field strength shall be measured for frequencies below 30 MHz. The equipment under test shall be measured at a distance of 10 m on an outdoor test site. The test antenna shall be a calibrated shielded magnetic field antenna. The equipment under test and test antenna shall be arranged as stated in clause A.1.

For Product Class 3 the transmitter antenna connector of the equipment under test shall be connected to an artificial antenna (see clause 6.2) and the output connector terminated.

The equipment under test shall be switched on with normal modulation. The characteristics of the modulation signal used shall be stated on the test report. The measuring receiver shall be tuned over the frequency range 9 kHz to 30 MHz, except for the frequency band on which the transmitter is intended to operate.

At each frequency at which a relevant spurious signal is detected the equipment under test and the test antenna shall be rotated until maximum field strength is indicated on the measuring receiver. This level shall be noted.

If the transmitter can be operated in the standby mode, then the measurements shall be repeated in the standby mode.

For measuring equipment calibrated in dBµV/m, the reading should be reduced by 51,5 dB to be converted to dBµA/m.

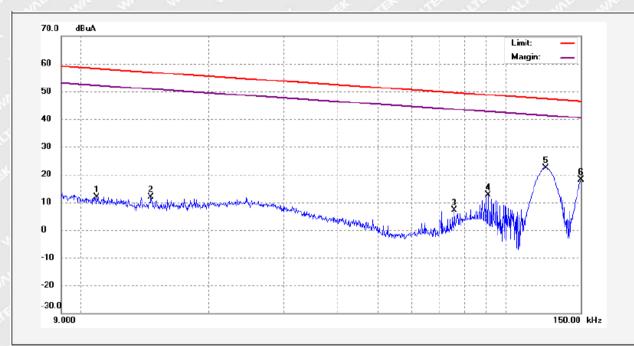
7.3 Test Condition

Operating Mode: TX mode

Test Environment: Normal Condition

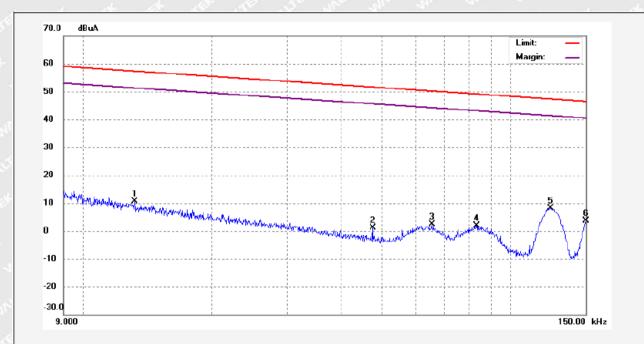
Test Voltage: DC 9V

Ambient temperature: 25°C

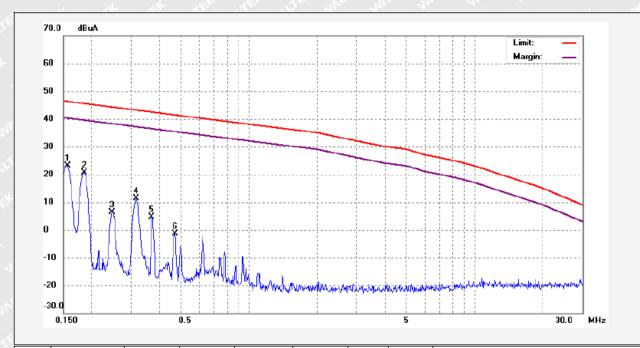

Humidity 54%RH

Atmospheric Pressure: 101.2kPa

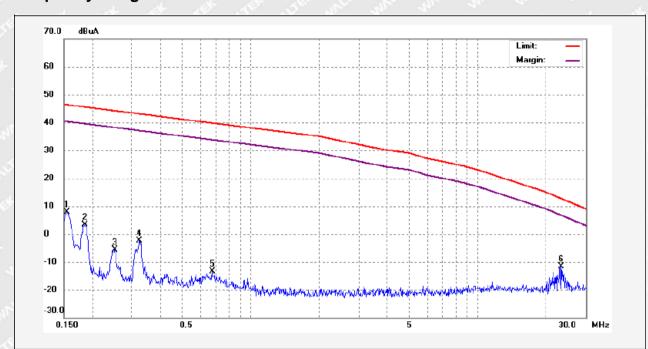
7.4 Test Result


Frequency Range: 9kHz-150kHz Polarization: Horizontal

No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
1	0.0109	13.93	-2.06	11.87	58.10	-46.23	peak	
2	0.0146	13.84	-2.03	11.81	56.80	-44.99	peak	
3	0.0757	9.55	-2.36	7.19	49.48	-42.29	peak	
4	0.0909	14.96	-2.31	12.65	48.67	-36.02	peak	
5	0.1242	24.58	-2.25	22.33	47.28	-24.95	peak	
6	0.1500	20.38	-2.24	18.14	46.44	-28.30	peak	


Frequency Range: 9kHz-150kHz Polarization: Vertical

No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
1	0.0132	12.67	-2.04	10.63	57.25	-46.62	peak	
2	0.0476	3.26	-2.22	1.04	51.54	-50.50	peak	
3	0.0656	4.72	-2.32	2.40	50.12	-47.72	peak	
4	0.0831	4.18	-2.35	1.83	49.06	-47.23	peak	
5	0.1239	10.43	-2.25	8.18	47.29	-39.11	peak	
6	0.1500	5.88	-2.24	3.64	46.44	-42.80	peak	


Frequency Range: 150kHz-30MHz Polarization: Horizontal

No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
1	0.1565	25.37	-2.23	23.14	46.25	-23.11	peak	
2	0.1853	22.81	-2.22	20.59	45.50	-24.91	peak	
3	0.2468	8.59	-2.19	6.40	44.22	-37.82	peak	
4	0.3149	13.59	-2.16	11.43	43.14	-31.71	peak	
5	0.3692	6.81	-2.22	4.59	42.43	-37.84	peak	
6	0.4686	0.88	-2.32	-1.44	41.37	-42.81	peak	

Frequency Range: 150kHz-30MHz Polarization: Vertical

No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
1	0.1548	10.10	-2.23	7.87	46.30	-38.43	peak	
2	0.1853	5.68	-2.22	3.46	45.50	-42.04	peak	
3	0.2521	-3.41	-2.18	-5.59	44.13	-49.72	peak	
4	0.3234	-0.29	-2.17	-2.46	43.02	-45.48	peak	
5	0.6753	-10.89	-2.47	-13.36	39.75	-53.11	peak	
6	23.2633	-8.71	-2.86	-11.57	12.76	-24.33	peak	

8 Radiated Spurious Emission Above 30MHz

8.1 Standard Applicable

According to EN 300330 section 4.3.9, the power of any radiated emission shall not exceed the values given in table 6.

Sta	ate ret	47 MHz to 74 MHz 87,5 MHz to 118 MHz 174 MHz to 230 MHz 470 MHz to 790 MHz	Other frequencies between 30 MHz to 1 000 MHz
Oper	ating	4 nW	250 nW
Star	ndby	2 nW	2 nW

8.2 Test Procedure

EUT was placed on a nonmetal table which is 1.5 meter above the grounded reference plane and set to work in normal operation mode. Details refer to EN 300 330 subclause 6.2.9.

8.3 Test Condition

Operating Mode: TX mode

Test Environment: Normal Condition

Test Voltage: DC 9V

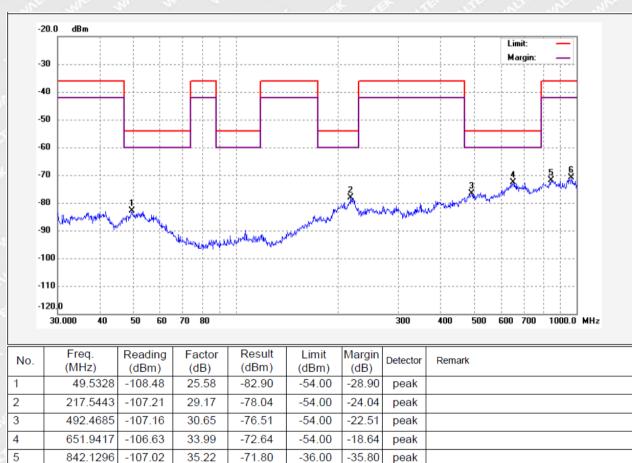
Ambient temperature: 25°C

Humidity: 54%RH

Atmospheric Pressure: 101.2kPa

8.4 Test Results

6


965.5420

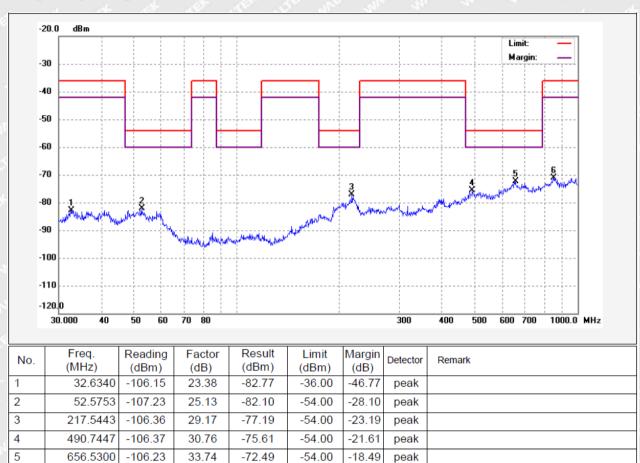
-105.54

34.58

-70.96

Frequency Range: 30MHz to 1GHz Polarization: Horizontal

-36.00


-34.96

peak

Frequency Range: 30MHz to 1GHz

Polarization: Vertical

-36.00

-35.16

peak

Note1: Standby mode does not produce any emission, which no emission been detected.

-71.16

6

851.0353

-106.82

35.66

9 Photographs —Test Setup

9.1 Photograph - Spurious Emissions Radiated Test Setup

Reference No.: WTF24F11264300W002 Page 23 of 23

10 Photographs – EUT Constructional Details

Please refer to "ANNEX".

====End of Report=====

TEST REPORT

Reference No	:	WTF24F11264300W001

Applicant.....: Mid Ocean Brands B.V.

Hong Kong

Manufacturer : 114538

Address.....:: : ---

Product Name.....: Foldable charging station

Model No.....: MO2145

Test specification.....: ETSI EN 303 417 V1.1.1 (2017-09)

Date of Receipt sample : 2024-11-18

Date of Test : 2024-11-27

Date of Issue..... 2024-11-29

Test Report Form No.: WEW-303417A-01B

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: 1/F., Building 19, Sunlink Machinery City, Xingye 4 Road, Guanglong Industrial Park, Chihua Neighborhood Committee, Chencun Town, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Tested by:

Approved by:

Roy Hong

Danny Zhou

Reference No.: WTF24F11264300W001 Page 2 of 40

1 Test Summary

Radio Spectrum						
Test	Test Requirement	Reference	Result			
Permitted range of operating frequencies	ETSI EN 303 417 V1.1.1	4.3.2	Pass			
Operating frequency ranges	ETSI EN 303 417 V1.1.1	4.3.3	Pass			
H-field requirements	ETSI EN 303 417 V1.1.1	4.3.4	Pass			
Transmitter spurious emissions	ETSI EN 303 417 V1.1.1	4.3.5	Pass			
Transmitter out of band (OOB) emissions	ETSI EN 303 417 V1.1.1	4.3.6	Pass			
WPT system unwanted conducted emissions	ETSI EN 303 417 V1.1.1	4.3.7	N/A			
Receiver blocking	ETSI EN 303 417 V1.1.1	4.4.2	Pass			

Remark:

Pass The EUT complies with the essential requirements in the standard

Fail The EUT does not comply with the essential requirements in the standard

N/A Not Applicable

2 Contents

			Page
		ST SUMMARY	
2	CON	NTENTS	3
3	GEN	NERAL INFORMATION	5
	3.1	GENERAL DESCRIPTION OF E.U.T.	
	3.2	DETAILS OF E.U.T.	
	3.3	STANDARDS APPLICABLE FOR TESTING	6
	3.4	TEST FACILITY	
	3.5	SUBCONTRACTED	
	3.6	ABNORMALITIES FROM STANDARD CONDITIONS	
	3.7	DISCLAIMER ·····	
4	EQL	JIPMENT USED DURING TEST	
	4.1	EQUIPMENT LIST	
	4.2	SOFTWARE LIST	
	4.3	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	
	4.4	MEASUREMENT UNCERTAINTY	
	4.5	DECISION RULE	
5	PER	RMITTED RANGE OF OPERATING FREQUENCY	
	5.1	STANDARD APPLICABLE	
	5.2	TEST PROCEDURE	
	5.3	TEST CONDITION	
	5.4	TEST RESULT	
6	OPE	ERATING FREQUENCY RANGES	
	6.1	STANDARD APPLICABLE	
	6.2	TEST PROCEDURE	
	6.3	TEST CONDITION	
	6.4	TEST RESULT	
7	TRA	ANSMITTER H-FIELD REQUIREMENTS	
	7.1	STANDARD APPLICABLE	
	7.2	TEST PROCEDURE	
	7.3	TEST CONDITION	
25	7.4	TEST RESULT	
8	TRA	ANSMITTER SPURIOUS EMISSIONS	
	8.1	STANDARD APPLICABLE	
	8.2	TEST PROCEDURE	
	8.3	TEST CONDITION	
	8.4	TEST RESULT······	
9	TRA	ANSMITTER OUT OF BAND(OOB) EMISSIONS	
	9.1	STANDARD APPLICABLE	
	9.2	TEST PROCEDURE	
	9.3	TEST CONDITION	
9	9.4		
1(CEIVER BLOCKING	
	10.1	STANDARD APPLICABLE	37

Reference No.: WTF24F11264300W001

Page 4 of 40

10.2 Test Procedure	37
10.3 Test Condition	37
10.4 Test Result	38
11 PHOTOGRAPHS – TEST SETUP	39
11.1 PHOTOGRAPH – SPURIOUS EMISSIONS TEST SETUP	39
12PHOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	Δι

WALTEK

3 General Information

3.1 General Description of E.U.T.

Product Name: Foldable charging station

Model No.: MO2145

Remark: ---

Rating: Input: DC 9V/3A, DC 9V/2.22A, DC 5V/2A

Output: DC 5V/0.3A, DC 5V/1A, DC 9V/1.66A

Wireless output power:

Magnetic charging pad: Max 15W Apple Watch only: Max 1.5W Wireless charging pad: Max 5W

Battery Capacity:: : ---

Adapter Model.....: ----

3.2 Details of E.U.T.

Frequency Bands : 110-205kHz (for Magnetic charging pad and Wireless charging pad)

Radiated H-Field: 17.79 dBuA/m(@3m) for Wireless charging pad

27.04 dBuA/m(@3m) for Magnetic charging pad

Antenna Type.....: Coil Antenna

Antenna Gain: 0dBi

Overview of operational modes within a WPT system

Operational Mode	Set-up	Function of base station	Function of mobile device	Test scenario	Conformance Requirements
Mode 1: base station in stand- by, idle mode	Single radiation test (TX) with the base station/charging pad. Transmitt applicable pad.		Operating frequency range (clause 4.3.3) H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Performance criteria test (RX test) (clause 4.4)		
Mode 2: Communication before charging, adjustment charging mode / position	In combination	TX and RX	TX and RX	Specific test setup, declared by the manufacturer. Manufacturer shall declare the maximal distance between base station and mobile device the WPT system is able to communicate (distance D).The test setup- up shall be performed with	Operating frequency range (clause 4.3.3) H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Wanted performance criteria test (RX test) (clause 4.4)

Operational Mode	Set-up	Function of base station	Function of mobile device	Test scenario	Conformance Requirements
White white	ANTER WATER	unitek wai	MINITEL W	the largest communication distance. The test set-up as described in clause 6.1.3 shall be used.	White white white
Mode3: Communication	WPT system alignment	TX and RX	TX and RX	Worst case alignment	Operating frequency range (clause 4.3.3)
Mode 4: energy transmission	WPT system alignment	TX and RX	TX and RX	Both tests can be performed within one set-up, worst-case alignment. The test set-up as described in clause 6.1.4 shall be used.	H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Wanted Performance criteria test (RX test) (clause 4.4)

3.3 Standards Applicable for Testing

The tests were performed according to following standards:

ETSI EN 303 417 V1.1.1 (2017-09)

Wireless power transmission systems, using technologies other than radio frequency beam in the 19 - 21 kHz,59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz,6 765 - 6 795 kHz ranges; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU.

3.4 Test Facility

The test facility has a test site registered with the following organizations:

ISED – Registration No.: 21895

Waltek Testing Group (Foshan) Co., Ltd. has been registered and fully described in a report filed with the Innovation, Science an Economic Development Canada(ISED). The acceptance letter from the ISED is maintained in our files. Registration ISED number:21895, March 12, 2019

FCC – Registration No.: 820106

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 820106, August 16, 2018

NVLAP – Lab Code: 600191-0

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 600191-0.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Reference No.: WTF24F11264300W001 Page 7 of 40

3	.5	SI	ıhı	20	ntr	20	ted
J		Ju	W	-0	ıılı	ab	ıcu

Whether parts of tests for the product have been subcontracted to other labs:
☐ Yes ☐ No If Yes, list the related test items and lab information:
Test items:
Lab information:
3.6 Abnormalities from Standard Conditions

None.

3.7 Disclaimer

The antenna gain information is provided by the customer. The laboratory is not responsible for the accuracy of the antenna gain information.

4 Equipment Used during Test

4.1 Equipment List

⊠3m	Semi-anechoic Cham	ber for Spurious E	mission			
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	3m Semi-anechoic Chamber	CHANGCHUANG	9m×6m×6m	7 7	2024-01-05	2025-01-04
2	EMI TEST RECEIVER	RS	ESR7	101566	2024-01-06	2025-01-05
3	Spectrum Analyzer	Agilent	N9020A	MY48011796	2024-01-04	2025-01-03
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9162	9162-117	2024-01-05	2025-01-04
5	Coaxial Cable (below 1GHz)	H+S	CBL3-NN- 12+3 m	214NN320	2024-01-06	2025-01-05
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	01561	2024-01-05	2025-01-04
7	Broadband Preamplifier (Above 1GHz)	Lunar E M	LNA1G18-40	20160501002	2024-01-04	2025-01-03
8	Coaxial Cable (above 1GHz)	Times-Micorwave	CBL5-NN	At At	2024-01-04	2025-01-03
⊠RF	Conducted test		Carre along	The The	7) L	- ,4
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Environmental Chamber	GERUI	GR-HWS- 1000L	GR24061818	2024-07-02	2025-07-01
2	Spectrum Analyzer	Agilent	N9020A	MY48011796	2024-01-04	2025-01-03
3	EXG Analog Signal Generator	Agilent	N5181A	MY48180720	2024-01-04	2025-01-03
4	RF Control Unit	CHANGCHUANG	JS0806-2	INTER WILLE	2024-01-04	2025-01-03

☐: Not Used

⊠: Used

4.2 Software List

Description	Manufacturer	Model	Version
EMI Test Software (Radiated Emission)	FARATRONIC	EZ-EMC	RA-03A1-2
RF Conducted Test	TONSCEND	JS1120-2	2.6

4.3 Special Accessories and Auxiliary Equipment

ltem	Equipment	Technical Data	Manufacturer	Model No.
1.	white Lunis	me me mil	At 15th is	in miles where

4.4 Measurement Uncertainty

Parameter	Uncertainty	Note	
RF Output Power	±2.2dB	(1)	
Occupied Bandwidth	±1.5%	(1)	
and the wall wall to	±3.8dB (for 25MHz-1GHz)	(1)	
Transmitter Spurious Emission	±5.0dB (for 1GHz-18GHz)	(1)	

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.5 Decision Rule

Compliance or non-compliance with a disturbance limit shall be determined in the following manner.

If U_{LAB} is less than or equal to U_{cispr} , then

- -Compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- -Non-compliance is deemed to occur is any measured disturbance level exceeds the disturbance limit.

If U_{LAB} is greater than U_{cispr} , then

- -Compliance is deemed to occur if no measured disturbance level, increased by $(U_{LAB}-U_{cispr})$, exceeds the disturbance limit;
- -Non-compliance is deemed to occur if any measured disturbance level, increased by $(U_{LAB}-U_{cispr})$, exceeds the disturbance limit.

Reference No.: WTF24F11264300W001

5 Permitted Range of Operating Frequency

5.1 Standard Applicable

- 1. This applies to all WPT systems.
- 2. The permitted range of operating frequencies denotes the frequency ranges set out in Table 1. It likewise denotes the respective frequency range for accommodation of the fundamental WPT frequency of the EUT within its operating frequency range (OFR).

3. Limits

The permitted range of operating frequency range(s) for intentional emissions shall be within 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz, see Table 2.

5.2 Test Procedure

Please refer to ETSI EN 303 417 subclause 6.2.2.

5.3 Test Condition

Operating Mode: TX mode

Test Environment: Normal Condition

Test Voltage: DC 9V

Ambient temperature: 25°C

Humidity: 54%RH

Atmospheric Pressure: 101.2kPa

5.4 Test Result

For Wireless charging pad

Permitted range of operating frequencies							
F _L (kHz)	F _H (kHz)	Lim	Result Pass				
110 205	F _L ≥ 100	F _H ≤ 300					

For Magnetic charging pad

Permitted range of operating frequencies							
F _L (kHz)	F _H (kHz)	Limit (kHz)		Result			
110 205	F _L ≥ 100	F _H ≤ 300	Pass				

6 Operating Frequency Ranges

6.1 Standard Applicable

The operating frequency range is the frequency range over which the WPT system is intentionally transmitting (all operational modes, see clause 4.2.3, Table 2).

The operating frequency range(s) of the WPT system are determined by the lowest (f_L) and highest frequency (f_H) as occupied by the power envelope.

The WPT system could have more than one operating frequency range.

For a single frequency systems the OFR is equal to the occupied bandwidth (OBW) of the WPT system.

For multi-frequency systems the OFR is described in Figures 2 and 3.

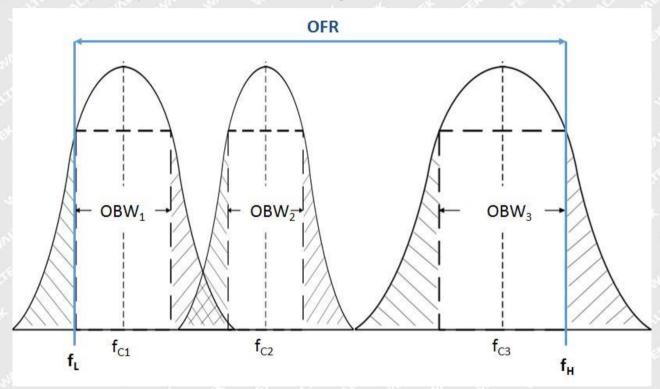


Figure 2: OFR of a multi - frequency WPT system within one frequency range of Table 2 and within one WPT system cycle time

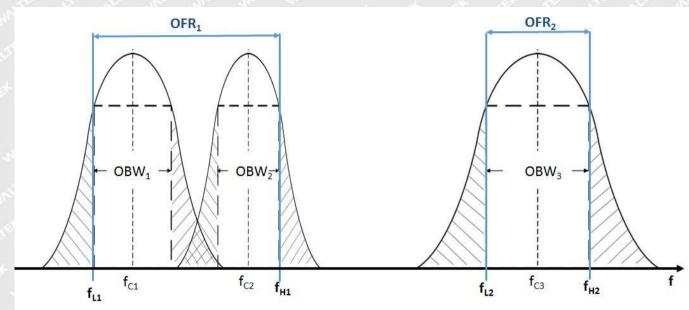


Figure 3: OFR of a multi - frequency WPT system within two frequency ranges of Table 2 and within one WPT system cycle time

Limits

The operating frequency range for emissions shall be within one of the following limits: 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz.

6.2 Test Procedure

Please refer to ETSI EN 303 417 subclause 6.2.2.

6.3 Test Condition

Operating Mode: TX mode

Test Environment Normal Condition

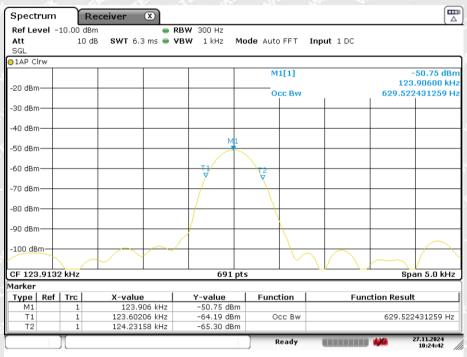
Test Voltage: DC 9V

Ambient temperature: 25°C

Humidity: 54%RH

Atmospheric Pressure: 101.2kPa

6.4 Test Result


For Wireless charging pad

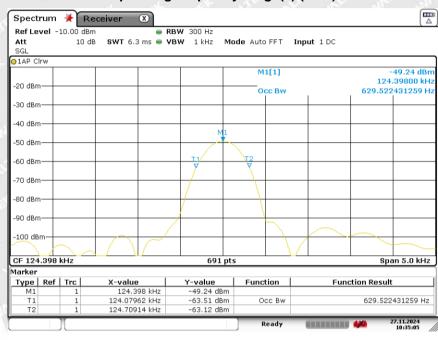
Operating frequency range(s) (OFR)							
F _L (kHz)	F _H (kHz)	Lin	Limit (kHz)				
123.60	124.38	F _L ≥ 100	F _H ≤ 300	Pass			

Test Plots:

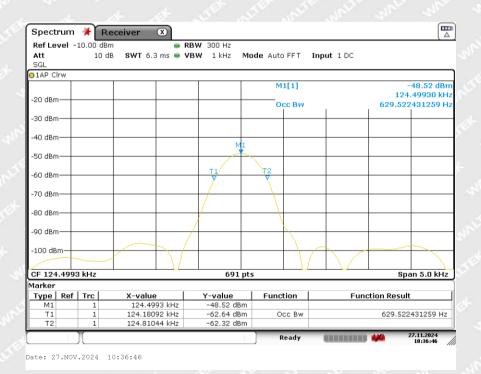
Operating frequency range(s) (OFR)

Date: 27.NOV.2024 10:24:42

Page 14 of 40



For Magnetic charging pad


E STEEL WITE SHIP	Operatin	g frequency range(s)	(OFR)	ALTER MITE
F _L (kHz)	F _H (kHz)	LITER WILLE WILLIAM	nit (kHz)	Result
124.08	124.81	F _L ≥ 100	F _H ≤ 300	Pass

Test Plots:

Operating frequency range(s) (OFR)

Date: 27.NOV.2024 10:35:05

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Reference No.: WTF24F11264300W001 Page 15 of 40

7 Transmitter H-field Requirements

7.1 Standard Applicable

The radiated H-field is defined in the direction of maximum field strength under specified conditions of measurement.

The H-field limits are provided in Table 3.

They have been specified for control of any radiated emissions within the OFR originating from the WPT system (power transmission and accompanying data communication).

The H-field limits in Table 3 are EU wide harmonised according to EC Decision 2013/752/EU [i.2]. Further information is available in CEPT/ERC/REC 70-03 [i.1].

Table 3: H-field limits

Frequency range [MHz]	H-field strength limit [dBµA/m at 10 m]	Comments
0,019 ≤ f < 0,021	72	a de de
0,059 ≤ f < 0,061	69,1 descending 10 dB/dec above 0,059 MHz	See note 1
0,079 ≤ f < 0,090	67,8 descending 10 dB/dec above 0,079 MHz	See note 2
0,100 ≤ f < 0,119	42	The The Man
0,119 ≤ f < 0,135	66 descending 10 dB/dec above 0,119 MHz	See note 1
0,135 ≤ f < 0,140	42	are are an
0,140 ≤ f < 0,1485	37,7	THE SET SET
0,1485 ≤ f < 0,30	-5	V. 24. 24. 2
6,765 ≤ f < 6,795	42	A COL SON S

NOTE 1: Limit is 42 dBμA/m for the following spot frequencies: 60 kHz ± 250 Hz and 129,1 kHz ± 500 Hz.
 NOTE 2: At the time of preparation of the present document the feasibility of increased limits for high power wireless power transmission systems to charge vehicles [i.4] was prepared. New specific requirements for such systems (e.g. higher H-field emission limits in the 79 - 90 kHz band) will be reflected within a future revision of the present document.

7.2 Test Procedure

Please refer to ETSI EN 303 417 subclause 6.2.2

7.3 Test Condition

Operating Mode: TX mode

Test Environment: Normal Condition

Atmospheric Pressure: 101.2kPa

Reference No.: WTF24F11264300W001 Page 16 of 40

7.4 Test Result

For Wireless charging pad

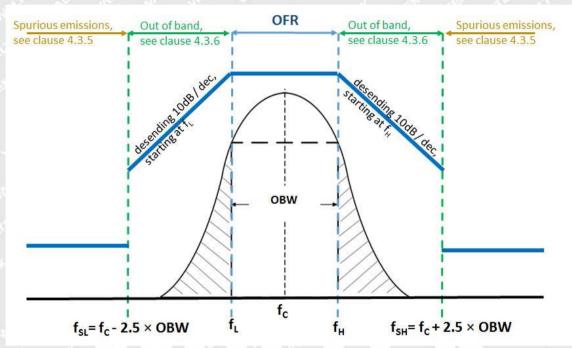
Frequency	Level	C₃ Factor	Level	Limit	Result
(MHz)	(dBuA/m)@3m	(dB)	(dBuA/m)@10m	(dBuA/m)@10m	
0.12	17.79	31.2	66	-5	Pass

For Magnetic charging pad

Frequency (MHz)	Level (dBuA/m)@3m	C ₃ Factor (dB)	Level (dBuA/m)@10m	Limit (dBuA/m)@10m	Result
0.12	27.04	31.2	66	W -5	Pass

Note 1: Pre-scan EUT X,Y,Z axis,and find the worst case at X axis.

Note 2: $H_{3m}=H_{10m}+C_3$ refer to ETSI EN 300 330 Annex H.2



8 Transmitter Spurious Emissions

8.1 Standard Applicable

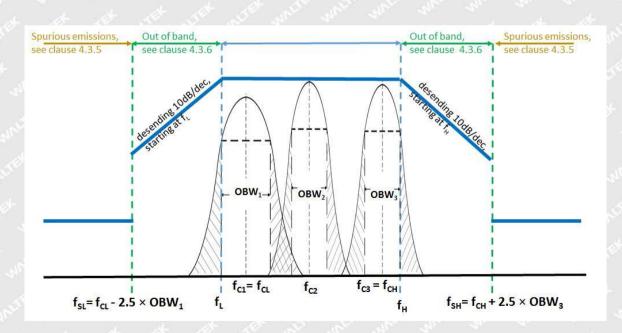

The transmitter spurious emissions for a single frequency system are to be considered in frequency ranges defined in Figure 4 ($f < f_{SL}$ and $f > f_{SH}$).

Figure 4: Out of band and spurious domain of a single frequency WPT system.

The transmitter spurious emissions for a multi frequency system (within one WPT frequency range from Table 2) are to be considered in frequency ranges defined in Figure 5 ($f < f_{SL}$ and $f > f_{SH}$).

Figure 5: Out of band and spurious domain of a multi - frequency system (during one WPT system cycle time).

Reference No.: WTF24F11264300W001 Page 18 of 40

Limit

The radiated field strength of spurious emissions below 30 MHz shall not exceed the generated H-field given in Table 4.

State (see note)	Frequency 9 kHz ≤ f < 10 MHz	Frequency 10 MHz ≤ f < 30 MHz
Operating	27 dBμA/m at 9 kHz descending 10 dB/dec	-3,5 dBμA/m
Standby	5,5 dBµA/m at 9 kHz descending 10 dB/dec	-25 dBµA/m

NOTE: "Operating" means mode 2, 3 and 4 according to Table 2; "standby" means mode 1 according to Table 2.

The power of any radiated spurious emission between 30 MHz and 1 GHz shall not exceed the values given in Table 5.

State (see note)	47 MHz to 74 MHz 87,5 MHz to 118 MHz 174 MHz to 230 MHz 470 MHz to 790 MHz	Other frequencies between 30 MHz to 1 000 MHz
Operating	4 nW	250 nW
Standby	2 nW	2 nW

NOTE: "Operating" means mode 2, 3 and 4 according to Table 2; "standby" means mode 1 according to Table 2.

8.2 Test Procedure

Please refer to ETSI EN 303 417 subclause 6.2.2 and subclause 6.2.3 for the measurement method

8.3 Test Condition

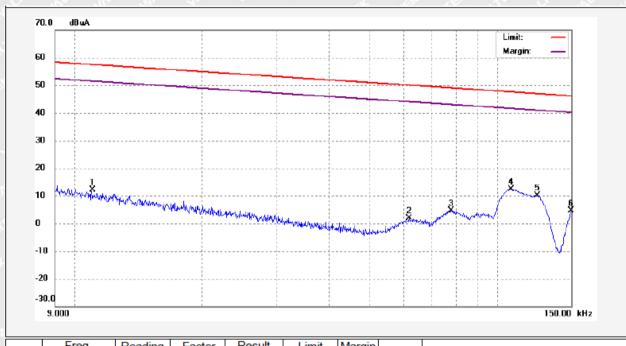
Operating Mode: TX mode, RX mode

Test Environment: Normal Condition

Test Voltage: DC 9V

Ambient temperature: 25°C

Humidity: 54%RH


Atmospheric Pressure 101.2kPa

8.4 Test Result

Pre-scan EUT X,Y,Z axis,and find the worst case at X axis.

Frequency Range: 9kHz-150kHz Emission@3m Area: Wireless charging pad

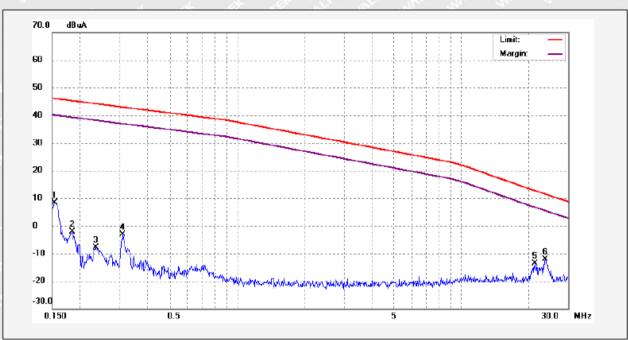
No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
1	0.0110	14.29	-2.06	12.23	57.48	-45.25	peak	
2	0.0620	4.17	-2.31	1.86	50.01	-48.15	peak	
3	0.0779	7.06	-2.36	4.70	49.02	-44.32	peak	
4	0.1079	14.64	-2.26	12.38	47.59	-35.21	peak	
5	0.1246	12.26	-2.25	10.01	46.95	-36.94	peak	
6	0.1496	6.97	-2.24	4.73	46.15	-41.42	peak	

Note $1:H_{3m}=H_{10m}+C_3$ refer to ETSI EN 300 330 Annex H.2

Frequency Range: 9kHz-150kHz Emission@3m Area: Wireless charging pad

Horizontal Polarization

No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
1	0.0095	15.73	-2.07	13.66	58.12	-44.46	peak	
2	0.0711	11.13	-2.34	8.79	49.41	-40.62	peak	
3	0.0799	10.55	-2.37	8.18	48.91	-40.73	peak	
4	0.1067	22.98	-2.26	20.72	47.64	-26.92	peak	
5	0.1249	20.04	-2.25	17.79	46.94	-29.15	peak	
6	0.1500	20.48	-2.24	18.24	46.13	-27.89	peak	


Note $1:H_{3m}=H_{10m}+C_3$ refer to ETSI EN 300 330 Annex H.2

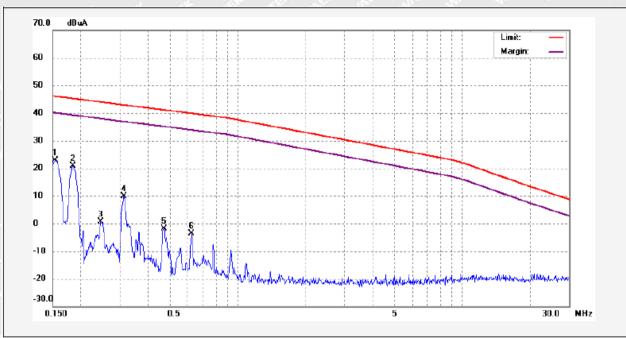
Page 21 of 40

Area: Wireless charging pad

Frequency Range:150kHz-30MHz Emission@3m

	No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
	1	0.1539	10.66	-2.23	8.43	46.02	-37.59	peak	
	2	0.1844	0.06	-2.22	-2.16	45.22	-47.38	peak	
ì	3	0.2341	-5.65	-2.19	-7.84	44.16	-52.00	peak	
	4	0.3100	-1.01	-2.16	-3.17	42.92	-46.09	peak	
	5	21.2595	-10.88	-2.73	-13.61	12.69	-26.30	peak	
	6	23.6360	-9.18	-2.89	-12.07	11.46	-23.53	peak	

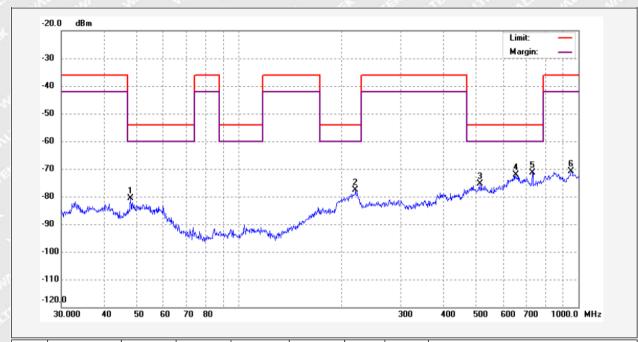
Note $1:H_{3m}=H_{10m}+C_3$ refer to ETSI EN 300 330 Annex H.2


Reference No.: WTF24F11264300W001

Frequency Range:150kHz-30MHz Emission@3m

Area: Wireless charging pad

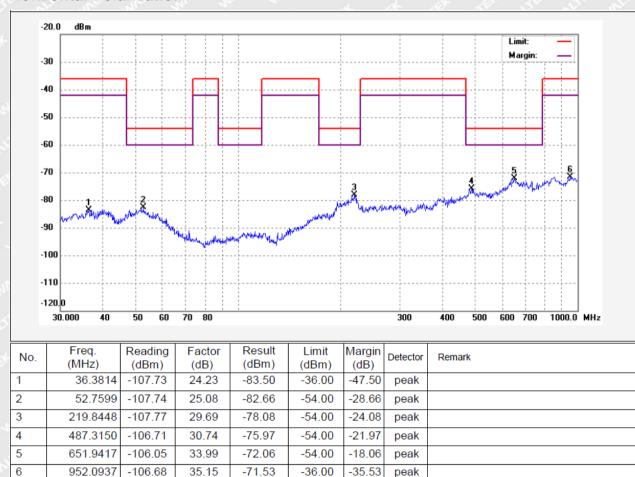
Horizontal Polarization



No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
1	0.1539	25.10	-2.23	22.87	46.02	-23.15	peak	
2	0.1844	23.02	-2.22	20.80	45.22	-24.42	peak	
3	0.2442	2.72	-2.19	0.53	43.98	-43.45	peak	
4	0.3100	12.07	-2.16	9.91	42.92	-33.01	peak	
5	0.4686	0.43	-2.32	-1.89	41.09	-42.98	peak	
6	0.6238	-1.08	-2.43	-3.51	39.82	-43.33	peak	

Note $1:H_{3m}=H_{10m}+C_3$ refer to ETSI EN 300 330 Annex H.2

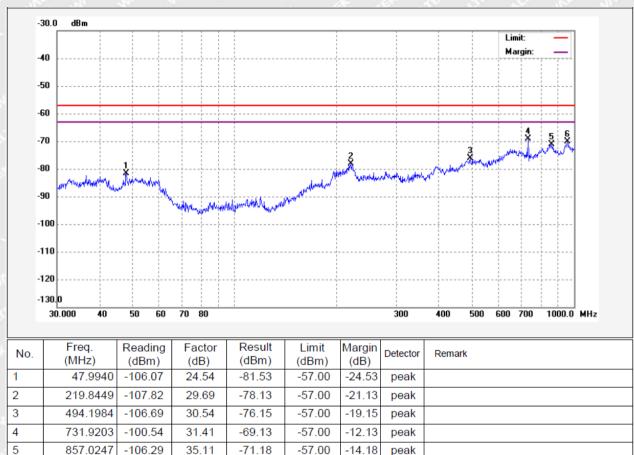
Frequency Range: 30MHz-1GHz Emission For TX Area: Wireless charging pad



No.	Freq. (MHz)	Reading (dBm)	Factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Detector	Remark
1	47.9940	-105.24	24.54	-80.70	-54.00	-26.70	peak	
2	220.6171	-107.07	29.43	-77.64	-54.00	-23.64	peak	
3	513.6331	-105.84	30.39	-75.45	-54.00	-21.45	peak	
4	654.2318	-106.07	33.86	-72.21	-54.00	-18.21	peak	
5	731.9202	-102.79	31.41	-71.38	-54.00	-17.38	peak	
6	952.0937	-105.96	35.15	-70.81	-36.00	-34.81	peak	

Frequency Range: 30MHz-1GHz Emission For TX Area: Wireless charging pad

Horizontal Polarization


Frequency Range: 30MHz-1GHz Emission For RX Area: Wireless charging pad

Vertical Polarization

6

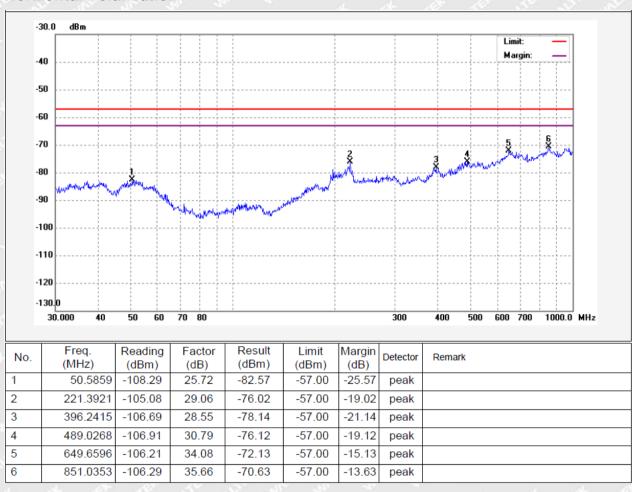
955.4381

-105.22

-57.00

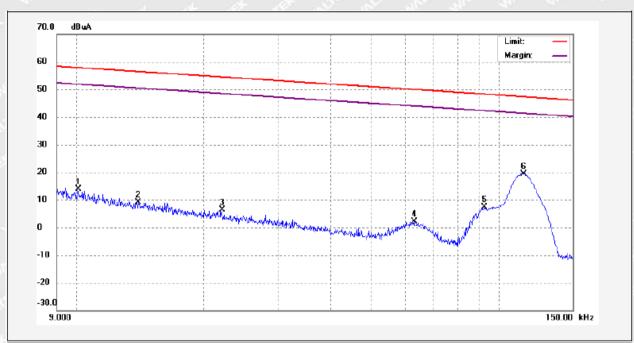
-13.21

peak


35.01

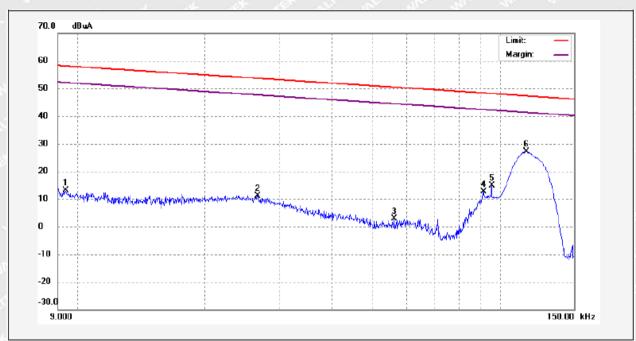
-70.21

Frequency Range: 30MHz-1GHz Emission For RX Area: Wireless charging pad


Horizontal Polarization

Note1: Standby mode dose not produce any emission, which no emission been detected.

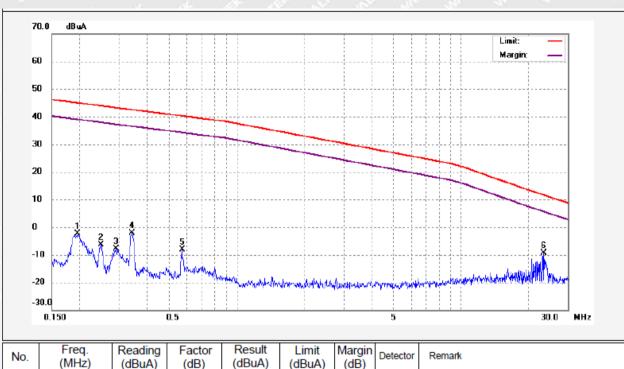
Frequency Range: 9kHz-150kHz Emission@3m Area: Magnetic charging pad


No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
1	0.0101	15.85	-2.07	13.78	57.85	-44.07	peak	
2	0.0140	11.18	-2.03	9.15	56.44	-47.29	peak	
3	0.0221	8.38	-1.95	6.43	54.47	-48.04	peak	
4	0.0631	4.50	-2.31	2.19	49.93	-47.74	peak	
5	0.0925	9.56	-2.30	7.26	48.27	-41.01	peak	
6	0.1145	21.65	-2.25	19.40	47.33	-27.93	peak	

Note 1: H_{3m} = H_{10m} + C_3 refer to ETSI EN 300 330 Annex H.2

Frequency Range: 9kHz-150kHz Emission@3m Area: Magnetic charging pad

Horizontal Polarization


No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
1	0.0093	15.13	-2.08	13.05	58.16	-45.11	peak	
2	0.0266	13.00	-1.91	11.09	53.64	-42.55	peak	
3	0.0561	5.08	-2.29	2.79	50.43	-47.64	peak	
4	0.0914	14.90	-2.30	12.60	48.33	-35.73	peak	
5	0.0956	17.04	-2.28	14.76	48.13	-33.37	peak	
6	0.1154	29.29	-2.25	27.04	47.29	-20.25	peak	

Note $1:H_{3m}=H_{10m}+C_3$ refer to ETSI EN 300 330 Annex H.2

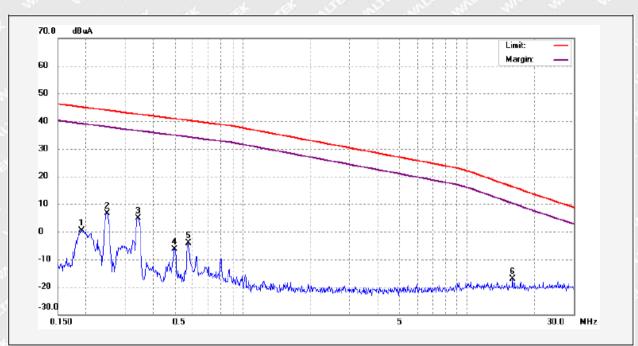
Area: Magnetic charging pad

Frequency Range:150kHz-30MHz Emission@3m

(dBuA) (dBuA) (dB) (dB) 0.1955 -0.19 -2.21 -2.40 -47.36 44.96 peak 2 0.2481 -4.18 -2.19 -6.37 43.91 -50.28 peak -5.77 3 0.2893 -2.17 -7.94 43.23 -51.17 peak 4 0.3410 -0.02 -2.19 -2.21 42.50 -44.71 peak 5 -5.60 0.5701 -2.40 -8.00 40.22 -48.22 peak -2.86 6 -6.63 -9.49 -21.14 23.2633 11.65 peak

Note 1:H_{3m}=H_{10m}+C₃ refer to ETSI EN 300 330 Annex H.2

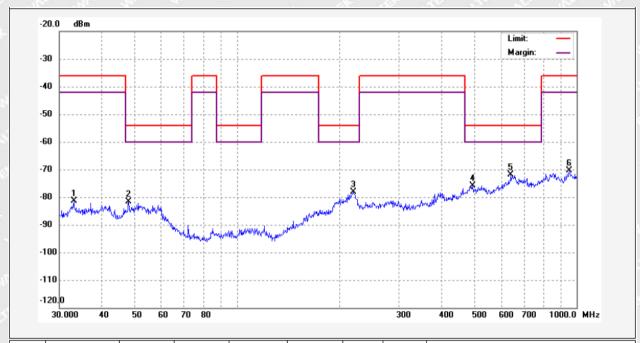
Page 30 of 40


Reference No.: WTF24F11264300W001

Area: Magnetic charging pad

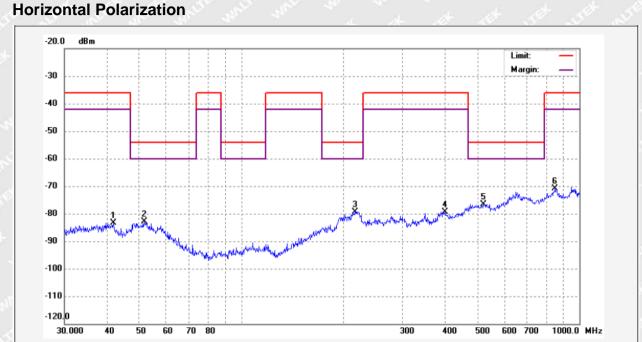
Frequency Range:150kHz-30MHz Emission@3m

Horizontal Polarization



No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit (dBuA)	Margin (dB)	Detector	Remark
1	0.1914	2.58	-2.21	0.37	45.05	-44.68	peak	
2	0.2481	8.86	-2.19	6.67	43.90	-37.23	peak	
3	0.3410	7.10	-2.19	4.91	42.49	-37.58	peak	
4	0.4967	-3.97	-2.35	-6.32	40.83	-47.15	peak	
5	0.5701	-1.60	-2.40	-4.00	40.22	-44.22	peak	
6	15.9698	-14.85	-2.37	-17.22	16.19	-33.41	peak	

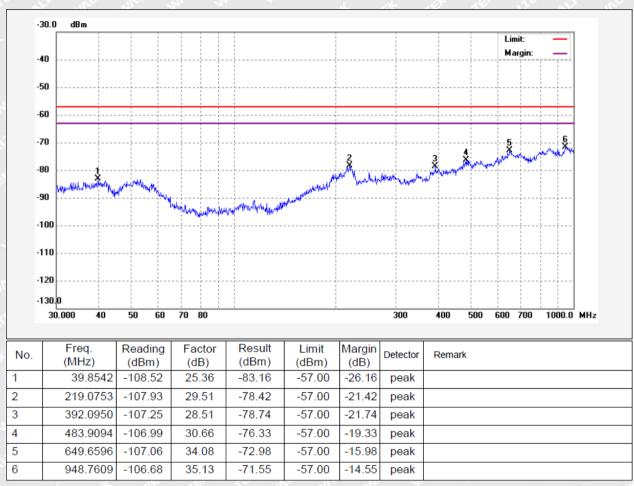
Note $1:H_{3m}=H_{10m}+C_3$ refer to ETSI EN 300 330 Annex H.2


Frequency Range: 30MHz-1GHz Emission For TX Area: Magnetic charging pad

No.	(MHz)	(dBm)	Factor (dB)	(dBm)	Limit (dBm)	Margin (dB)	Detector	Remark
1	33.0949	-104.94	23.69	-81.25	-36.00	-45.25	peak	
2	47.9940	-106.13	24.54	-81.59	-54.00	-27.59	peak	
3	219.8448	-107.84	29.69	-78.15	-54.00	-24.15	peak	
4	494.1984	-106.33	30.54	-75.79	-54.00	-21.79	peak	
5	640.6110	-105.41	33.51	-71.90	-54.00	-17.90	peak	
6	952.0937	-105.60	35.15	-70.45	-36.00	-34.45	peak	

No.	Freq. (MHz)	Reading (dBm)	Factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Detector	Remark
1	41.8596	-107.64	24.35	-83.29	-36.00	-47.29	peak	
2	51.6616	-108.33	25.40	-82.93	-54.00	-28.93	peak	
3	216.7828	-108.26	29.01	-79.25	-54.00	-25.25	peak	
4	400.4319	-107.80	28.52	-79.28	-36.00	-43.28	peak	
5	520.8882	-107.03	30.52	-76.51	-54.00	-22.51	peak	
6	848.0563	-106.55	35.63	-70.92	-36.00	-34.92	peak	

Frequency Range: 30MHz-1GHz Emission For RX Area: Magnetic charging pad



No.	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Detector	Remark
1	35.0048	-106.69	24.23	-82.46	-57.00	-25.46	peak	
2	47.9940	-105.47	24.54	-80.93	-57.00	-23.93	peak	
3	220.6171	-107.41	29.43	-77.98	-57.00	-20.98	peak	
4	670.4892	-104.65	32.96	-71.69	-57.00	-14.69	peak	
5	851.0353	-106.48	35.66	-70.82	-57.00	-13.82	peak	
6	955.4381	-105.16	35.01	-70.15	-57.00	-13.15	peak	

Horizontal Polarization

Note1: Standby mode dose not produce any emission, which no emission been detected.

Reference No.: WTF24F11264300W001 Page 35 of 40

9 Transmitter Out of Band(OOB) Emissions

9.1 Standard Applicable

The WPT system out of band emissions are to be considered in frequency ranges defined in Figure 4 and Figure 5 (between f_{SL} and f_{L} and between f_{H} and f_{SH}).

Limit

The OOB limits are visualized in Figures 4 and 5; they are descending from the intentional limits from Table 3 at f_H/f_L with 10 dB/decade.

9.2 Test Procedure

Please refer to ETSI EN 303 417 subclause 6.2.2 for the measurement method

9.3 Test Condition

Operating Mode TX mode

Test Environment: Normal Condition

Test Voltage: DC 9V

Ambient temperature: 25°C

Humidity: 54%RH

Atmospheric Pressure: 101.2kPa

9.4 Test Result

For Wireless charging pad

-31	Frequency	quency Result@3m		Result@10	Limit@10	Margin	Domork
No.	(MHz)	(dBuA/m)	(dB)	(dBuA/m)	(dBuA/m)	(dB)	Remark
1	F _{cL} -2.5 x OBW ₁	13.14	31.2	-18.06	-5	-13.06	peak
2	FL	16.32	31.2	-14.88	-5	-9.88	peak
3	FH	16.28	31.2	-14.92	-5	-9.92	peak
4	F _{cH} +2.5 x OBW ₃	13.38	31.2	-17.82	-5	-12.82	peak

Note 1:H_{3m}=H_{10m}+C₃ refer to ETSI EN300 330 Annex H.2

Reference No.: WTF24F11264300W001 Pa

Page 36 of 40

For Magnetic charging pad

alt. Navi	Frequency	Result@3m	C ₃	Result@10	Limit@10	Margin	Remark
No.	(MHz)	(dBuA/m)	(dB)	(dBuA/m)	(dBuA/m)	(dB)	
1	F _{cL} -2.5 x OBW ₁	22.51	31.2	-8.69	-5	-3.69	peak
2	Jali Puntile v	26.52	31.2	-4.68	-5	0.32	peak
3	F _H of	26.37	31.2	-4.83	-5	0.17	peak
4	F _{cH} +2.5 x OBW ₃	22.39	31.2	-8.81	-5	-3.81	peak

Note 1:H_{3m}=H_{10m}+C₃ refer to ETSI EN300 330 Annex H.2

Reference No.: WTF24F11264300W001 Page 37 of 40

10 Receiver Blocking

10.1 Standard Applicable

This requirement applies to all WPT systems operation in Mode 1, Mode 2 and Mode 3.

Blocking is a measure of the capability of the receiver to receive a wanted signal without exceeding a given degradation due to the presence of an unwanted input signal at any frequencies other than those of the receiver spurious responses.

The test shall be performed in the relevant operational modes (see clause 4.2.3).

The wanted performance criteria from clause 4.2.2 shall be used as criterion for the receiver blocking tests. Limit

Table 6: Receiver blocking limits

	In-band signal	OOB signal	Remote-band signal
Frequency	Centre frequency (f _c) of the WPT system (see clause 4.3.3)	$f = f_c \pm F$ (see note)	$f = fc \pm 10 \times F$ (see note)
Signal level field strength at the EUT	72 dBµA/m	72 dBµA/m	82 dBµA/m

The EUT shall achieve the wanted performance criterion, see clause 4.2.2, in the presence of the blocking signal.

10.2 Test Procedure

Please refer to ETSI EN 303 417 Sub-clause 6.2.3 for the measurement method

10.3 Test Condition

Operating Mode: RX mode

Test Environment: Normal Condition

Atmospheric Pressure: 101.2kPa

10.4 Test Result

For Wireless charging pad

			NAME OF STREET	
Test Frequency	Blocking Signal(dBuA/m)	Performance Criterion	Result	
fc -10 ×OFR	82	without degradation of performance	Pass	
Fc+OFR	72	without degradation of performance	Pass	
Fc Fc	72	without degradation of performance	Pass	
Fc+OFR	72	without degradation of performance	Pass	
fc +10 ×OFR	82	without degradation of performance	Pass	

For Magnetic charging pad

Test Frequency	Blocking Signal(dBuA/m)	Performance Criterion	Result
fc -10 xOFR	82	without degradation of performance	Pass
Fc+OFR	72	without degradation of performance	Pass
FC COL	72	without degradation of performance	Pass
Fc+OFR	72	without degradation of performance	Pass
fc +10 ×OFR	82	without degradation of performance	Pass

W

11 Photographs - Test Setup

11.1 Photograph - Spurious Emissions Test Setup

Reference No.: WTF24F11264300W001 Page 40 of 40

12 Photographs – EUT Constructional Details

Please refer to "ANNEX".

====End of Report=====

WALTER

TEST REPORT

Reference No	:	WTF24F11264300W003
--------------	---	--------------------

Applicant.....: Mid Ocean Brands B.V.

Address: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

Hong Kong

Manufacturer : 114538

Address.....: : >--

Product Name.....: Foldable charging station

Model No. : MO2145

Test specification.....: EN IEC 62311:2020

EN 50665:2017

Date of Receipt sample : 2024-11-18

Date of Test : 2024-11-27

Date of Issue.....: 2024-11-29

Test Report Form No. : WEW-62311A-01B

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: 1/F., Building 19, Sunlink Machinery City, Xingye 4 Road,
Guanglong Industrial Park, Chihua Neighborhood Committee, Chencun Town,
Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Tested by: Approved by:

Roy Hong Danny Zhou

Reference No.: WTF24F11264300W003 Page 2 of 7

1 Test Summary

HEALTH THE STATE S							
Test	Test Method	Class / Severity	Result				
RF Exposure	EN IEC 62311:2020 EN 50665:2017	MULL MULL MULL	Pass				

Remark:

Pass Test item meets the requirement

N/A Not Applicable

2 Contents

			Page					
1	TES	ST SUMMARY	2					
2	CON	CONTENTS						
3	GEN	GENERAL INFORMATION						
	3.2	GENERAL DESCRIPTION OF E.U.T. TECHNICAL SPECIFICATION						
		ALTH REQUIREMENTS						
	4.2	RF EXPOSURE EVALUATIONS	(
5	PHC	OTOGRAPHS - FUT CONSTRUCTIONAL DETAILS						

WALTER

3 General Information

3.1 General Description of E.U.T.

Product Name: Foldable charging station

Model No.: MO2145

Remark: ---

Rating: Input: DC 9V/3A, DC 9V/2.22A, DC 5V/2A

Output: DC 5V/0.3A, DC 5V/1A, DC 9V/1.66A

Wireless output power:

Magnetic charging pad: Max 15W Apple Watch only: Max 1.5W Wireless charging pad: Max 5W

Battery Capacity: ---Adapter Model: ----

3.2 Technical Specification

For Wireless charging pad and magnetic charging pad

Frequency Bands: 110-205kHz (for Magnetic charging pad and Wireless charging pad)

Radiated H-Field: 17.79 dBuA/m(@3m) for Wireless charging pad

27.04 dBuA/m(@3m) for Magnetic charging pad

Antenna Type.....: Coil Antenna

Antenna Gain: 0dBi

For Apple watch charging pad

Permitted Range of Operating Frequency: 148.5 kHz to 5MHz

(Manufacturer's declared frequency of product operation: 325kHz – 330kHz for the apple watch

charging pad)

Operating Frequency: 326.5kHz

Radiated H-Field: 11.43dBuA/m(@3m) for middle apple watch charging

pad

Antenna installation: Coil Antenna

Antenna Gain: 0dBi

3.3 Standards Applicable

The tests were performed according to following standards:

EN IEC 62311:2020 Assessment of electronic and electrical equipment related to human exposure

restrictions for electromagnetic fields (0 Hz - 300 GHz)

EN 50665:2017 Generic standard for assessment of electronic and electrical equipment

related to human exposure restrictions for electromagnetic fields (0 Hz - 300

GHz).

4 Health Requirements

According to Council Recommendation: the criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation.

Reference levels for electric, magnetic and electromagnetic fields (0Hz to 300GHz, unperturbed RMS values)

ortanbea Mine					
Frequency range	E-field strength (V/m)	H-field strength (A/m)	B-field (μT)	Equivalent plane wave power density Seq (W/m2)	
0-1 Hz	-	3.2×10 ⁴	4×10 ⁴	-	
1-8 Hz	10000	3.2×10 ⁴ /f ²	4×10 ⁴ /f ²	-	
8-25 Hz	10000	4000/f	5000/f	-	
0.025-0.8 kHz	250/f	4/f	5/f	-	
0.8-3 kHz	250/f	5	6.25	-	
3-150 kHz	87	5	6.25	-	
0.15-1 MHz	87	0.73/f	0.92/f	-	
1-10 MHz	87/f ^{1/2}	0.73/f	0.92/f	-	
10-400 MHz	28	0.073	0.095	2	
400-2000 MHz	1.375 f ^{1/2}	0.0037 f ^{1/2}	0.0046 f ^{1/2}	f/200	
2-300 GHz	61	0.16	0.2	10	

Note:

- 1. f as indicated in the frequency range column.
- 2. For frequencies between 100 kHz and 10 GHz, Seq, E2, H2 and B2 are to be averaged over any six-minute period.
- 3. For frequencies exceeding 10 GHz, Seq, E2, H2 and B2 are to be averaged over any 68 / f1.05 minute period (f in GHz).
- 4. No E-field value is provided for frequencies<1 Hz, which are effectively static electric fields. For most people the annoying perception of surface electric charges will not occur at field strengths less than 25 kV/m. Spark discharges causing stress or annoyance should be avoided.

Reference No.: WTF24F11264300W003 Page 6 of 7

4.1 RF Exposure Evaluations

$$E = \sqrt{30PG_{(\theta,\phi)}} / r$$

Antenna gain in numeric (G): 10[^] (Antenna gain in dBi /10)

Distance from EUT to Human (r): 0.20 m

4.2 RF Exposure test procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

4.3 Test Result of RF Exposure Evaluation

The antenna of the product, under normal use condition is at least 20 cm away from the body of the user. Warning statement to the user to keeping at least 20 cm separation distance and the prohibition of operating to a person has been printed on the user's manual. So, this product under normal use is located on electromagnetic far field between the human body.

C	Charging Area	Frequency (kHz)	Radiated H-Field (dBµA/m)	Radiated H-Field (A/m)	Limit (A/m)	Result
	Wireless arging pad	120	17.79	0.0000077535	5	Pass
	ople watch arging pad	326.5	11.43	0.0000037282	2.24	Pass
	Magnetic arging pad	120	27.04	0.0000224905	5	Pass

Remark:

- 1) For details of Radiated H-Field refer to report No. WTF24F11264300W001 and WTF24F11264300W002 .
- 2) Radiated H-Field (A/m)= 10^[(dBuA/m)/20]/10^6

Since average output power at worst case is: 0.0000224905A/m which cannot exceed the exempt condition, 5A/m specified in EN IEC 62311. It is deemed to full fit the requirement of RF exposure basic restriction specified in EC Council Recommendation (1999/519/EC).

Reference No.: WTF24F11264300W003 Page 7 of 7

5 Photographs – EUT Constructional Details

Please refer to "ANNEX".

====End of Report=====

WALTEK

O.LTh