

APPLICATION FOR ELECTROMAGNETIC COMPATIBILITY DIRECTIVE

On Behalf of

Mid Ocean Brands B.V.

Funny sweater with LED light

Model No.: CX1553, CX1554

Prepared for : Mid Ocean Brands B.V.

Address

7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong

Kong

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Address

Shenzhen, Guangdong, China

Report Number : A2405188-C01-R01

Date of Receipt : May 21, 2024
Date of Test : May 22, 2024
Date of Report : May 28, 2024

Version Number : V0

Test Result : Pass

TABLE OF CONTENTS

De	escrip	ption	Page
1.	Sumr	mary Of Standards And Results	7
••	1.1.	Description of Standards and Results	
2.		eral Information	
	2.1.	Description of Device (EUT)	_
	2.2.	Tested Supporting System Details	
	2.3.	Block Diagram of connection between EUT and simulators	
	2.4.	Test Mode Description	
	2.5.	Test Facility	
	2.6.	Measurement Uncertainty	
	2.7.	Test Equipment List	
3.		lucted Disturbance At Mains Terminals Test	
	3.1.	Block Diagram of Test Setup	
	3.2.	Power Line Conducted Emission Test Limits	
	3.3.	Configuration of EUT on Test	
	3.4.	Operating Condition of EUT	
	3.5.	Test Procedure	
	3.6.	Conducted Disturbance at Mains Terminals Test Results	16
4.	Radia	ated Disturbance Test	
	4.1.	Block Diagram of Test Setup	17
	4.2.	Test Limit	18
	4.3.	Configuration of EUT on Test	18
	4.4.	Operating Condition of EUT	18
	4.5.	Test Procedure	18
	4.6.	Radiated Disturbance Test Results	20
5.	Harm	nonic Current Test	24
	5.1.	Block Diagram of Test Setup	24
	5.2.	Test Standard	24
	5.3.	Harmonic Current Test Limits	24
	5.4.	Configuration of EUT on Test	25
	5.5.	Operating Condition of EUT	25
	5.6.	Test Procedure	25
	5.7.	Harmonic Current Test Results	26
6.	Volta	ge Fluctuations & Flicker Test	27
	6.1.	Block Diagram of Test Setup	27
	6.2.	Voltage Fluctuation and Flicker Test Limits	27
	6.3.	Test Standard	27
	6.4.	Configuration of EUT on Test	27
	6.5.	Operating Condition of EUT	27
	6.6.	Test Procedure	27
	6.7.	Voltage Fluctuation and Flicker Test Results	29
7.	Immu	unity Performance Criteria	30

8.	Electi	rostatic Discharge Test	. 31
	8.1.	Block Diagram of Test Setup	. 31
	8.2.	Electrostatic Discharge Test Limits	. 31
	8.3.	Configuration of EUT on Test	. 31
	8.4.	Operating Condition of EUT	. 31
	8.5.	Test Procedure	. 32
	8.6.	Electrostatic Discharge Test Results	. 33
9.	RF Fi	eld Strength Susceptibility Test	. 34
	9.1.	Block Diagram of Test Setup	. 34
	9.2.	RF Field Strength susceptibility Test Limits	. 34
	9.3.	Configuration of EUT on Test	. 34
	9.4.	Operating Condition of EUT	. 34
	9.5.	Test Procedure	. 35
	9.6.	RF Field Strength Susceptibility Test Results	. 36
10.	Electi	rical Fast Transient/Burst Immunity Test	. 37
	10.1.	Block Diagram of Test Setup	. 37
	10.2.	Electrical Fast Transient/Burst Test Limits	. 37
	10.3.	Configuration of EUT on Test	. 37
	10.4.	Operating Condition of EUT	. 37
	10.5.	Test Procedure	. 38
	10.6.	Electrical Fast Transient/Burst immunity Test Results	. 39
11.	Surge	e test	. 40
		Block Diagram of Test Setup	
	11.2.	Surge Test Limits	. 40
	11.3.	Configuration of EUT on Test	. 40
	11.4.	Operating Condition of EUT	. 40
	11.5.	Test Procedure	. 41
	11.6.	Surge Test Results	. 42
12.	Inject	ed Currents Susceptibility Test	. 43
	12.1.	Block Diagram of Test Setup	. 43
	12.2.	Injected currents susceptibility Test Limits	. 43
	12.3.	Configuration of EUT on Test	. 43
	12.4.	Operating Condition of EUT	. 43
	12.5.	Test Procedure	. 43
	12.6.	Injected currents susceptibility Test Results	. 44
13.	Magn	etic Field Immunity Test	. 45
	13.1.	Block Diagram of Test Setup	. 45
	13.2.	magnetic field Test Limits	. 45
		Configuration of EUT on Test	
		Operating Condition of EUT	
	13.5.	Test Procedure	. 46
	13.6.	Magnetic Field Immunity Test Results	. 46
14.	Volta	ge Dips And Interruptions Test	. 47
	14.1.	Block Diagram of Test Setup	. 47
	14.2.	Voltage dips and interruptions Test Limits	. 47

	14.3.	Configuration of EUT on Test	47
	14.4.	Operating Condition of EUT	47
	14.5.	Test Procedure	47
	14.6.	Voltage Dips And Interruptions Test Results	48
15.	Photo	graphgraph	49
	15.1.	Photo Of Radiated Emissions Test (In Semi Anechoic Chamber)	49
	15.2.	Photo of Electrostatic Discharge Test	49
	15.3.	Photo of RF Field Strength Susceptibility Test	50
16.	Photo	s Of The EUT	51

Report No.: A2405188-C01-R01

TEST REPORT DECLARATION

Applicant : Mid Ocean Brands B.V.

Address : 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong

Manufacturer : Mid Ocean Brands B.V.

Address : 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong

EUT Description : Funny sweater with LED light

(A) Model No. : CX1553, CX1554

(B) Trademark: N/A

Measurement Standard Used:

EN IEC 61000-6-3:2021 EN IEC 61000-6-1:2019

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the EN IEC 61000-6-3 and EN IEC 61000-6-1 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)......

Project Engineer

Approved by (name + signature)......

Project Manager

Date of issue...... May 28, 2024

Revision History

Revision	Issue Date	Revisions	Revised By
V0	May 28, 2024	Initial released Issue	Jerry Yin

1. Summary Of Standards And Results

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION						
Description of Test Item	Standard	Limits	Results			
Conducted disturbance at mains terminals	EN IEC 61000-6-3:2021	Section 11 Table 2	N/A			
Conducted disturbance at telecommunication port	EN IEC 61000-6-3:2021	Section 11 Table 3	N/A			
Radiated disturbance	EN IEC 61000-6-3:2021	Section 11 Table 1	Р			
Harmonic current emissions	EN IEC 61000-3-2:2019+A1:2021	Section 7	N/A			
Voltage fluctuations & flicker	EN 61000-3-3:2013+A1:2019+A2:20 21	Section 5	N/A			

IMMUNITY (EN IEC 61000-6-1:2019)

Description of Test Item	Standard	Performanc e Criteria	Observation Criteria	Results
Electrostatic discharge (ESD)	IEC 61000-4-2:2008	В	Α	Р
Radio-frequency, Continuous radiated disturbance	IEC 61000-4-3:2006+ A1:2007 + A2:2010	А	А	Р
Electrical fast transient (EFT)	IEC 61000-4-4:2012	В	N/A	N/A
Surge (Input a.c. power port)	IEC 61000-4-5:2014+	В	N/A	N/A
Surge(Telecommunication port)	A1:2017	N/A	N/A	N/A
Radio-frequency, Continuous conducted disturbance	IEC 61000-4-6:2013	А	N/A	N/A
Power frequency magnetic field	IEC 61000-4-8:2009	А	N/A	N/A
Voltage dips, >95% reduction		В	N/A	N/A
Voltage dips, >95% reduction		В	N/A	N/A
Voltage dips, 30% reduction	IEC 61000-4-11:2020	С	N/A	N/A
Voltage interruptions, >95% reduction		С	N/A	N/A

Note:

- 1. P is an abbreviation for Pass.
- 2. F is an abbreviation for Fail.
- 3. N/A is an abbreviation for Not Applicable.
- 4. Decision rules for the conclusion of this test report: decision by actual test data without considering measurement uncertainty.

Report No.: A2405188-C01-R01

2. General Information

2.1. Description of Device (EUT)

Description : Funny sweater with LED light

Model Number : CX1553, CX1554

Diff : There is no difference between the models except the appearance color. So all

the test were performed on the model CX1553.

Test Voltage : DC 6V From Battery

EUT information : N/A.

Highest frequency : Less than 108MHz

Software version : N/A Hardware version : N/A

Accessories1 : N/A

2.2. Tested Supporting System Details

No. Description		Manufacturer	Model	Serial Number
1.	N/A	N/A	N/A	N/A

2.3. Block Diagram of connection between EUT and simulators

For Test

EUT

Signal Cable Description of the above Support Units							
No. Port Name		Cable	Length	Shielded (Yes or No)	Detachable (Yes or No)		
(a)	N/A	N/A	N/A	N/A	N/A		

2.4. Test Mode Description

For Radiated disturbance Tests					
No.	Test Mode	Test Voltage			
Mode 1	Lighting	DC 6V From Battery			

2.5. Test Facility

Shenzhen Alpha Product Testing Co., Ltd.

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

2.6. Measurement Uncertainty

Test Item	Uncertainty	Ucispr		
Uncertainty for Conduction emission test	1.63dB	3.8 dB		
Uncertainty for Radiation Emission test	3.74 dB (Distance: 3m Polarize: V)	5.2 dB		
(<1G)	3.76 dB (Distance: 3m Polarize: H)			
Uncertainty for Padiation Emission test (>1G)	3.77 dB (Distance: 3m Polarize: V)	5.2 dB		
Uncertainty for Radiation Emission test (>1G)	3.80 dB (Distance: 3m Polarize: H)	5.2 UB		
(95% confidence levels, k=2)				

For Power Line Conducted Emission Test Equipment:

Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal.Inte rval
1.	Test Receiver	Rohde&Schwarz	ESCI	101165	4.42 SP1	2023.08.16	1 Year
2.	L.I.S.N.#1	Schwarz beck	NSLK8126	8126-466	N/A	2023.08.16	1 Year
3.	L.I.S.N.#2	Rohde&Schwarz	ENV216	101043	N/A	2023.08.16	1 Year
4.	Pulse Limiter	Schwarz beck	9516F	9618	N/A	2023.08.16	1 Year
5.	ISN	SCHWARZBECK	CAT5 8158	00316	N/A	2024.03.20	1 Year
6.	ISN	SCHWARZBECK	NTFM 8158	00273	N/A	2024.03.20	1 Year
7.	ISN	SCHWARZBECK	CAT3 8158	CAT3 8158 #167	N/A	2024.03.20	1 Year

Page 11 of 55

For Fi	For Frequency Range 30MHz~1GHz Radiated Emission Test Equipment:								
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval		
1	Test Receiver	Rohde&Schwarz	ESR	1316.3003K0 3-102082-Wa	2.28 SP1	2023.08.16	1 Year		
3	Bilog Antenna	Schwarz beck	VULB 9168	VULB 9168#627	N/A	2023.08.28	2 Year		

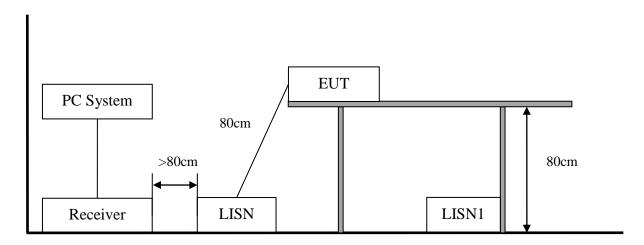
For F	For Frequency Range above 1GHz Radiated Emission Test Equipment:								
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval		
1	Spectrum Analyzer	Rohde&Schwarz	FSU	200002	4.71.SP5	2023.08.16	1 Year		
2	Horn Antenna	Schwarz beck	BBHA 9120 D	02106	N/A	2023.08.19	2 Year		
3	Amplifier	Agilent	8449B	3008A02664	N/A	2023.08.16	1 Yea		

For H	For Harmonic Current Test & Voltage Fluctuations & Flicker Test Equipment:							
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval	
1.	HARMINICS&FL ICKER MEASUREMEN T SYSTEM		HFM300_V20 0	P630850TD1 411113	N/A	2024.03.22	1Year	

F	For Electrostatic Discharge Test Equipment:							
It	em	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval
	1.	ESD Tester	HAEFELY	EDS 30V	ES0310004 23052	N/A	2024.01.08	1 Year.

For R	F Field Strength	Susceptibility Test	Equipment:				
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval
1.	vector Signal Generator	Agilent	E4438C	US44271917	N/A	2023.08.16	1 Year
2.	Power meter	Agilent	E4419B	GB40202122	N/A	2023.08.16	1 Year
3.	Power Sensor	Agilent	E9300A	MY41496625s	N/A	2023.08.16	1 Year
4.	RF power Amplifier	OPHIR	5225R	1045	N/A	N/A	NCR
5.	RF power Amplifier	OPHIR	5273R	1018	N/A	N/A	NCR
6	RF power Amplifier	Micotop	MPA-3000-60 00-100	MPA1811348	N/A	N/A	NCR
7.	Antenna	SCHWARZBECK	STLP9128E-s pecial	STLP9128E s#139	N/A	N/A	NCR
8.	Antenna	SCHWARZBECK	STLP 9149	STLP 9149 #456	N/A	N/A	NCR

For Electrical Fast Transient/Burst Immunity, Surge, Power Frequency Magnetic Field Immunity, Voltage dips and interruptions test Equipment:


Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal.
	Multifunctional				VEISIOIT		IIILEIVAI
	Multifunctional						
1.	Compact	3ctest	CCS 600	ES0801655	CCS V4.0.9	2023.08.16	1 Year
	Immunity Test						
	system						
	Surge & EFT						
2.	Coupling	3ctest	SEPN 3832T	ES0951601	N/A	2023.08.16	1 Year
۷.	Decoupling	Sciesi					
	Network						
	Voltage variation						
3.	and PF magnetic	Octoot	\/NAT00400	E00444004	N1/A	0000 00 40	1 1/22
3.	field regulating	3ctest	VMT2216S	ES0441601	N/A	2023.08.16	1 Year
	device						
	Capacitive						
4.	Coupling	3ctest	CCC 100	EC0441660	N/A	2023.08.16	1 Year
	Clamp						

For In	jected currents su	sceptibility test Ec	luipment:				
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval
1.	Conducted Immunity test System	SKET	CITS_150K23 0M	SK201910100 1_CITS	N/A	2023.08.16	1 Year
2.	Fixed Coaxial Attenuator (6dB Attenuation)	CD	ATT-0675	120540086	N/A	2023.08.16	1 Year
3.	coupling-decoupl ing network (CDN)	CD	CDN M2/M3	2302	N/A	2023.08.16	1 Year
4.	Electromagnetic Injection Clamp (EMC-Clamp)	CD	EM-Clamp	0513A031201	N/A	2023.08.16	1 Year

ForTest Softwar	rTest Software Information						
Item Software Name Manufacturer Version							
RE	EZ-EMC	Farad	Alpha-3A1				
CE	EZ-EMC	Farad	Alpha-3A1				

3. Conducted Disturbance At Mains Terminals Test

3.1. Block Diagram of Test Setup

3.2. Power Line Conducted Emission Test Limits

	Maximum RF Line Voltage				
Frequency	Quasi-Peak Level	Average Level			
	dB(μV)	dB(μV)			
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*			
500kHz ~ 5MHz	56	46			
5MHz ~ 30MHz	60	50			

Notes:

- 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss
- 2. * Decreasing linearly with logarithm of frequency.
- 3. The lower limit shall apply at the transition frequencies.

Report No.: A2405188-C01-R01

3.3. Configuration of EUT on Test

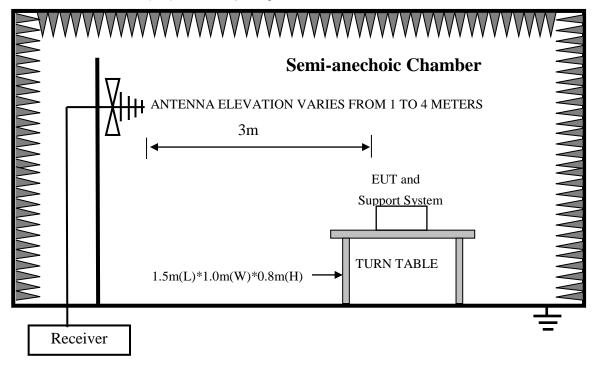
The following equipment are installed on conducted disturbance at mains terminals to meet the EN IEC 61000-6-3 requirement and operating regulations in a manner that tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

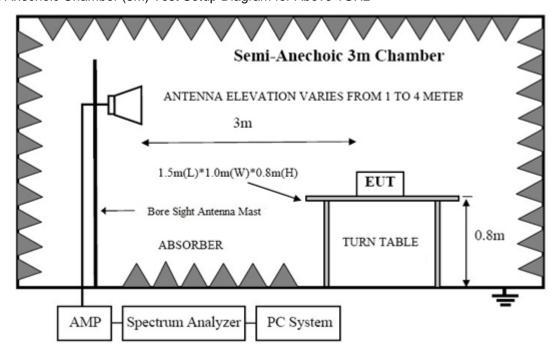
- (1) Setup the EUT as shown as Section 3.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

3.5. Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to EN IEC 61000-6-3 on Conducted Disturbance at Mains Terminals test.
- The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER Funny sweater with LED light I) is set at 9kHz.
- (3) The test results are reported on Section 3.7.


3.6. Conducted Disturbance at Mains Terminals Test Results

EUT	: Funny sweater with LED light	Test Date : N/A
M/N	: CX1553	Temperature : N/A
Test Engineer	: N/A	Humidity : N/A
Test Voltage	: N/A	Pressure : N/A
Test Mode	: N/A	
Test Results	: N/A	
Note: 1.The t	est results are listed in next pages.	


4. Radiated Disturbance Test

4.1. Block Diagram of Test Setup

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

4.2. Test Limit

Frequency	Distance	Field Strengths Limits			
MHz	(Meters)	dB(μV)/m			
30 ~ 230	3	40			
230 ~ 1000	3	47			
1000 ~ 3000	3	70(Peak) 50(Average)			
3000 ~ 6000	3	74(Peak) 54(Average)			

Notes:

- 1. Emission level = Read level + Antenna Factor Preamp Factor + Cable Loss
- 2. The smaller limit shall apply at the cross point between two frequency bands.
- 3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

4.3. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the EN IEC 61000-6-3 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

4.4. Operating Condition of EUT

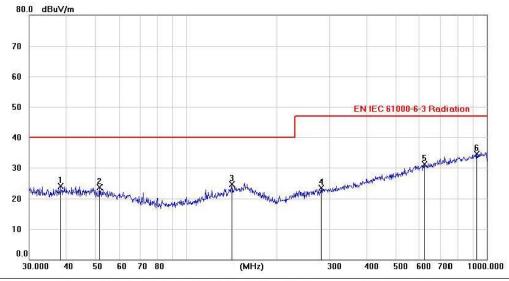
- (1) Setup the EUT as shown as Section 4.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

4.5. Test Procedure

- The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all the interface cables were changed according to EN IEC 61000-6-3 on Radiated Disturbance test.
- The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESR) is set at 120kHz.
- (3) The resolution bandwidth of the Rohde&Schwarz Spectrum Analyzer FSV40-N was set at 1MHz. (For above 1GHz)
- (4) The frequency range from 30MHz to 1000MHz was pre-scJerry Yind with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, all measurement distance is 3m in 3m semi anechoic chamber.
- (5) The frequency range from 1GHz to 6GHz was checked with peak and average detector,

measurement distance is 3m in 3m chamber.

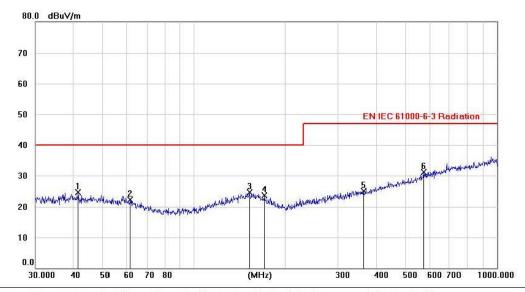
(6) The test results are reported on Section 4.8.


4.6. Radiated Disturbance Test Results

For below 1G radiated disturbance test result:							
EUT	: Funny sweater with LED light	Test Date	:	2024.5.22			
M/N	: CX1553	Temperature	:	23.5℃			
Test Engineer	: Jerry Yin	Humidity	:	51%			
Test Voltage	: DC 6V From Battery	Pressure	:	101.6kPa			
Test Mode	: Lighting						
Test Results	: PASS						

Note:

- 1. The test results are listed in next pages.
- 2. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet limits and the measurement with the quasi-peak detector need not be carried out.

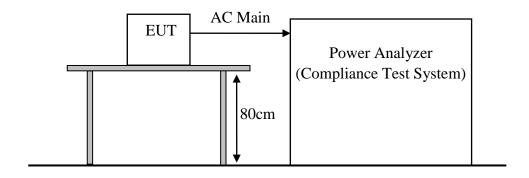

Antenna Polarity: Vertical

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu√	dB	dBu\√/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.3328	9.69	14.22	23.91	40.00	-16.09	peak			
2		51.6434	9.70	13.88	23.58	40.00	-16.42	peak			
3		142.2080	10.06	14.47	24.53	40.00	-15.47	peak			
4		281.9287	9.75	13.63	23.38	47.00	-23.62	peak			
5		622.0897	10.39	20.64	31.03	47.00	-15.97	peak			
6	*	926.5140	10.05	24.38	34.43	47.00	-12.57	peak			

Note:1. *:Maximum data; x:Over limit; I:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Antenna Polarity: Horizontal

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBu√/m	dBuV/m	dB	Detector	cm	degree	Comment
1		41.6838	10.19	14.35	24.54	40.00	-15.46	peak			,
2		61.7275	9.17	12.88	22.05	40.00	-17.95	peak			
3	*	152,7534	9.55	15.05	24.60	40.00	-15.40	peak			
4		171.8138	9.64	13.83	23.47	40.00	-16.53	peak			
5		363.0269	9.49	15.49	24.98	47.00	-22.02	peak			
6		575.9034	11.48	19.71	31.19	47.00	-15.81	peak			


Note:1. *:Maximum data; x:Over limit; I:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

For above 1G radiated emissions test result:

					_	
EUT	:	: F	Funny sweater with LED light	Test Date	:	N/A
M/N	:	: (CX1553	Temperature	:	N/A
Test Er	ngineer :	: 1	N/A	Humidity	:	N/A
Test Vo	oltage :	: 1	N/A	Pressure	:	N/A
Test Mo	ode :	: 1	N/A			
Test Re	esults :	: 1	N/A			
Niete	The highest fre	eque	ency of the internal sources of the EUT i	s less than 108 MH	łz,	the measurement
Note:	shall only be m	nade	e up to 1 GHz. So the frequency rang 10	GHz-6GHz radiation	n te	est not applicable.

5. Harmonic Current Test

5.1. Block Diagram of Test Setup

5.2. Test Standard

EN IEC 61000-3-2:2019+A1:2021; Class A

5.3. Harmonic Current Test Limits

For Class A equipment:

Harmonic order	Maximum permissible harmonic current		
n	A		
Odd h	armonics		
3	2,30		
5	1,14		
7	0,77		
9	0,40		
11	0,33		
13	0,21		
$15 \le n \le 39$	0,15 ¹⁵ / _n		
Even h	narmonics		
2	1,08		
4	0,43		
6	0,30		
$8 \le n \le 40$	0,23 8 n		

for Class B equipment:

The harmonics of the input current shall not exceed the values given in Class A equipment limit multiplied by a factor of 5.4.

5.4. Configuration of EUT on Test

The following equipment are installed on Harmonic Current Test to meet the EN61000-3-2 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

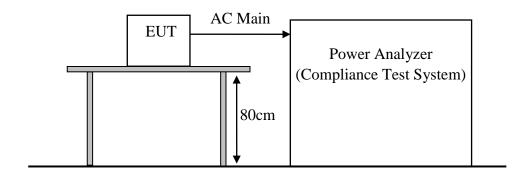
5.5. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 5.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

5.6. Test Procedure

- (1) The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the necessary for the EUT to be exercised.
- (2) The test results are reported on Section 5.8.

5.7. Harmonic Current Test Results


EUT	: Funny sweater with LED light	Test Date	: N/A				
M/N	: CX1553	Temperature	: N/A				
Test Engineer	: N/A	Humidity	: N/A				
Test Voltage	: N/A	Pressure	: N/A				
Test Mode	: N/A						
Test Results	: N/A						
Note: The EUT is supplied by Battery, so this item does not applicable.							

Page 26 of 55

Report No.: A2405188-C01-R01

6. Voltage Fluctuations & Flicker Test

6.1. Block Diagram of Test Setup

6.2. Voltage Fluctuation and Flicker Test Limits

Test Item	Limit	Note
P _{st}	1.0	P _{st} means Short-term flicker indicator
Plt	0.65	P _{lt} means long-term flicker indicator
T _{dt}	0.2	T _{dt} means maximum time that dt exceeds 3%
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
d _c (%)	3.3%	d _c means relative steady-state voltage change.

6.3. Test Standard

EN 61000-3-3:2013+A1:2019+A2:2021

6.4. Configuration of EUT on Test

The following equipment are installed on Voltage Fluctuation and Flicker Test to meet the EN61000-3-3 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

6.5. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 6.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

6.6. Test Procedure

(1) The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal conditions During the

flick measurement; the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

(2) The test results are reported on Section 6.8.

6.7. Voltage Fluctuation and Flicker Test Results

EUT	: Funny sweater with LED light	Test Date : N/A					
M/N	: CX1553	Temperature : N/A					
Test Engineer	: N/A	Humidity : N/A					
Test Voltage	: N/A	Pressure : N/A					
Test Mode	: N/A						
Test Results	: N/A						
Note: The EUT is supplied by Battery, so this item does not applicable.							

Report No.: A2405188-C01-R01

7. Immunity Performance Criteria

Performance Level

The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance level by its manufacturer or the requestor of the test, or the agreed between the manufacturer and the purchaser of the product.

Definition related to the performance level:

- 1. Based on the used product standard
- 2.Based on the declaration of the manufacturer, requestor or purchaser

Performance criterion A

When seen from the normal viewing distance, the EUT shall operate with no change beyond the manufacturer's specification, in flicker, colour, focus and jitter (except for the power frequency magnetic field test).

Power frequency magnetic field test

For CRT monitors, the following also applies:

The jitter shall be measured using a measuring microscope as specified in 6.6.14 of ISO 9241-3.

The jitter (in mm) shall not exceed the value $\frac{\text{(character height in mm} + 0,3) \times 2,5}{33,3}$ when the CRT monitor

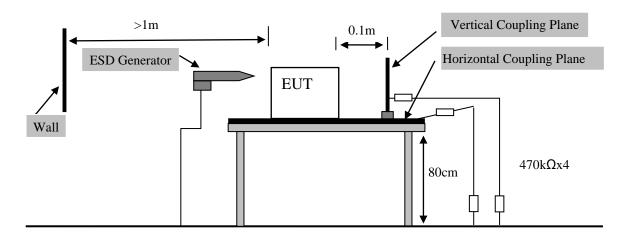
is immersed in a continuous magnetic field of 1A/m (r.m.s.) at one of the power frequencies of 50Hz.

Alternatively, a field of 50A/m may be applied, and a transparent graduated mask used to assess the jitter. In that case, the jitter shall not exceed 50 times the value in the above formula.

NOTE-This test level is used to simplify the measurement of jitter. Lesser values of the test level may be used if non-linearity is experienced, due to, for example, saturation of screening material.

The EUT shall be tested in two positions, both perpendicular to the magnetic field.

Performance criterion B


Screen disturbances during the application of the test are permissible.

Performance criterion C

Failures which are not self-recovered after removal of the external disturbance, but which can be recovered to normal operation by reset or reboot are permissible.

8. Electrostatic Discharge Test

8.1. Block Diagram of Test Setup

8.2. Electrostatic Discharge Test Limits

Test Type	Test Level	Performance Criterion
Air Discharge	2, 4, 8KV	В
Contact Discharge	2, 4KV	В

Notes: 1. Test set-up reference IEC 61000-4-2:2008

8.3. Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-2 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 8.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

8.5. Test Procedure

(1) Air Discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 20 times (10 with positive and 10 negative with positive) for each pre-selected test point. This procedure was repeated until all the air discharge completed.

Report No.: A2405188-C01-R01

(2) Contact Discharge:

All the procedure was same as Section 8.6.1. Except that the generator was re-triggered for a new single discharge and repeated 20 times for each pre-selected test point. The tip of the discharge electrode was touching the EUT before the discharge switch was operated.

(3) Indirect discharge for horizontal coupling plane:

At least 20 single discharges (10 with positive and 10 negative with positive) were applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

(4) Indirect discharge for vertical coupling plane:

At least 20 single discharge (10 with positive and 10 negative with positive) were applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, was placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

8.6. Electrostatic Discharge Test Results

EUT	:	Funny sweater with LED light	Test Date	:	2024.5.22
M/N	:	CX1553	Temperature	:	24℃
Test Engineer	:	Jerry Yin	Humidity	:	56%
Test Voltage		DC 6V From Battery	Pressure	:	101.6kPa
Toot Modo		Lighting			

Test Mode : Lighting

Test Results : PASS

Dis	charge	Type Of Discharge	Disal	norgooble F	lainta	Perfori	mance	
Volt	age (kV)	Type Of Discharge D		Dischargeable Points		Required	Observation	
	±2	Contact	N/A		В	N/A		
	±4	Contact	N/A			В	N/A	
	±2	Air		1, 2		В	А	
	±4	Air	1, 2		В	А		
	±8	Air	1, 2		В	А		
	±4	HCP-Bottom	Edge of the HCP		В	А		
	±4	VCP-Front	Center of the VCP		В	А		
	±4	VCP-Left	Center of the VCP		В	А		
	±4	VCP-Back	Center of the VCP		В	А		
	±4	VCP-Right	Center of the VCP		В	А		
	Discharge Po			nts Descript	ion			
1	Gap			5.	N/A			
2	Swith			6.	N/A			
	1			i e				

Note:

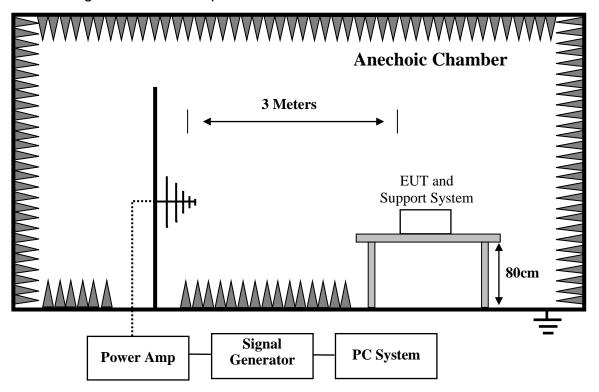
3 4. N/A

N/A

1. For the time interval between successive single discharges an initial value of one second.

7.

8.


N/A

N/A

- 2. For Air Discharge each Point Positive 10 times and negative 10 times discharge.
- 3. The EUT is mounted inside the product and only the switch is accessible.
- 4. Class A is no function loss.

9. RF Field Strength Susceptibility Test

9.1. Block Diagram of Test Setup

9.2. RF Field Strength susceptibility Test Limits

Test Specifications	Test Level	Performance Criterion
80MHz-1000MHz	3V/m (r.m.s.)	А
1.4GHz-2.0GHz	3V/m (r.m.s.)	А
2.0GHz-2.7GHz	1V/m (r.m.s.)	A

Notes:

1. Test set-up reference IEC 61000-4-3:2006 + A1:2007 + A2:2010

9.3. Configuration of EUT on Test

The following equipment are installed on RF Field Strength Susceptibility Test to meet the IEC 61000-4-3 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

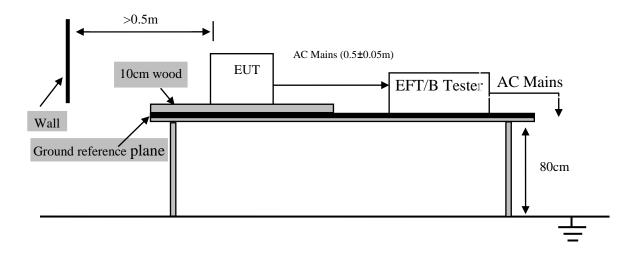
- (1) Setup the EUT as shown as Section 9.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

Report No.: A2405188-C01-R01

9.5. Test Procedure

- Testing was performed in a Fully anechoic chamber as recommended by IEC 61000-4-3.The EUT was placed on an 80 cm high non-conductive table located in the area of field uniformity.
- The radiating antenna was placed 3m in front of the EUT and Support system, and dwell time of the radiated interference was controlled by an automated, computer-controlled system.
 The signal source was stepped through the applicable frequency range at a rate no faster than 1% of the fundamental. The signal was amplitude modulated 80% over the frequency range
- (3) 80 MHz to 1GHz & 1.4GHz to 2GHz at a level of 3 V/m. The signal was amplitude modulated 80% over the frequency range 2GHz to 2.7GHz at a level of 1 V/m The dwell time was set at 3 s. Field presence was monitored during testing via a field probe placed in close proximity to the EUT.
- (4) Throughout testing, the EUT was closely monitored for signs of susceptibility. The test was performed with the antennae oriented in both a horizontal and vertical polarization.
- (5) All the scanning conditions are as follows:

	T
Condition of Test	Require of Test
Test Fielded Strength	3 V/m & 1V/m
Radiated Signal	80% amplitude modulated with a 1kHz sine wave
Scanning Frequency	80 - 1000 MHz, 1.4GHz-2GHz, 2GHz-2.7GHz
Sweeping time of radiated	0.0015 decade/s
Dwell Time	3 Sec.


9.6. RF Field Strength Susceptibility Test Results

EUT :	Funny sweater v		Test Date	: 2024.5.22				
M/N :	CX1553		Temperature	: 23.5℃				
Test Engineer :	Jerry Yin	Humidity	: 51%					
Test Voltage	DC 6V From Ba	ttery		Pressure	: 101.6kPa			
Test Mode :	Lighting							
Test Results :	PASS							
Modulation: ☑ AM ☐ Pulse				□ none 1 kH	z 80%			
Frequency Range		80 MHz -1000MHz						
Field strength		3V/m						
Steps		1%						
	Hori	izontal	Ve	ertical	Result			
	Required	Observation	Required	Observation	(Pass / Fail)			
Front	А	Α	Α	Α	Pass			
Right	А	Α	А	А	Pass			
Rear	А	Α	А	А	Pass			
Left	А	Α	А	А	Pass			
Remark: Class A is no function loss								

on:	☑ AM [⊒ Pulse	□ none 1 kHz	z 80%
1.4Gz~6GHz				
3V/m				
spot test				
Horizontal		Vertical		Result
Required	Observation	Required	Observation	(Pass / Fail)
А	Α	А	Α	Pass
Α	А	А	А	Pass
А	А	А	А	Pass
A	Α	Α	Α	Pass
	Hori Required A A A	Horizontal Required Observation A A A A A A	1.4Gz~6 3V/m spot tell Horizontal Vel Required Observation Required A	1.4Gz~6GHz 3V/m spot test Horizontal Vertical Required Observation A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

10. Electrical Fast Transient/Burst Immunity Test

10.1.Block Diagram of Test Setup

10.2. Electrical Fast Transient/Burst Test Limits

Test Specifications	Test Level	Performance Criterion
1.	2	2
2.	4	4
3.	6	8
4.	8	15
Х	Special	Special

Notes:

1. Test set-up reference IEC 61000-4-4:2012

10.3. Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-4 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

10.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 10.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

Report No.: A2405188-C01-R01

10.5.Test Procedure

The EUT and its simulators were placed on the ground reference plane and were insulated from it by a wood support 0.1m + 0.01m thick. The ground reference plane was 1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane was project beyond the EUT by at least

(1) 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane was more than 0.5m. All cables to the EUT was placed on the wood support, cables not subject to EFT/B was routed as far as possible from the cable under test to minimize the coupling between the cables.

10.6.1. For input and AC power ports:

The EUT was connected to the power mains by using a coupling device that couples the EFT interference signal to AC power lines. Both positive transients and negative transients of test voltage were applied during compliance test and the duration of the test can't less than 1min.

10.6.2. For signal lines and control lines ports:

It's unnecessary to test.

10.6.3. For DC input and DC output power ports:


It's unnecessary to test.

10.6. Electrical Fast Transient/Burst immunity Test Results

EUT	:	Funny sweater with LED light	Test Date : N/A	
M/N	:	CX1553	Temperature : N/A	
Test Engineer	:	N/A	Humidity : N/A	
Test Voltage	:	N/A	Pressure : N/A	
Test Mode	:	N/A		
Test Results	:	N/A		
Note	:	EUT is provided by Battery and has no interconnection wires, so this item is not applicable.		

11. Surge test

11.1.Block Diagram of Test Setup

11.2.Surge Test Limits

Severity Level	Open-Circuit Test Voltage (kV)	
1	0.5	
2	1	
3	2	
4	4	
*	Special	

Notes: 1. Test set-up reference IEC 61000-4-5:2014+A1:2017

11.3.Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-5 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

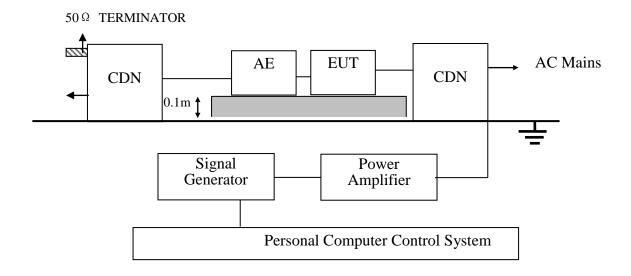
11.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 11.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

Report No.: A2405188-C01-R01

11.5.Test Procedure

- For line-to-line coupling mode, provide a 1kV 1.2/50us voltage surge (at open-circuit condition)
- (1) and 8/20us current surge to EUT selected points, and for active line / neutral lines to ground are same except test level is 2kV.
- (2) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are applied during test.
- (3) Different phase angles are done individually.
- (4) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.


11.6.Surge Test Results

EUT	: Funny sweater with LED light	Test Date	:	N/A
M/N	: CX1553	Temperature	:	N/A
Test Engineer	: N/A	Humidity	:	N/A
Test Voltage	: N/A	Pressure	:	N/A
Test Mode	: N/A	·		
Test Results	: N/A			
Note	EUT is provided by Battery and : applicable.	d has no interconnection w	ires, so	this item is not

Page 42 of 55

12. Injected Currents Susceptibility Test

12.1.Block Diagram of Test Setup

12.2.Injected currents susceptibility Test Limits

Level	Voltage Level (e.m.f.) V		
1	1		
2	3		
3	10		
X	Special		

Notes: 1. Test set-up reference IEC 61000-4-6:2013

12.3.Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-6 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

12.4. Operating Condition of EUT

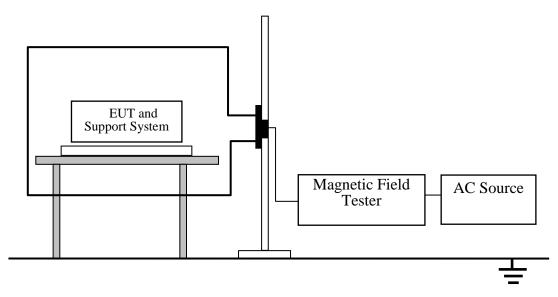
- (1) Setup the EUT as shown as Section 12.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

12.5.Test Procedure

(1) Let the EUT work in test mode and test it.

Report No.: A2405188-C01-R01

- The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN


 (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 10 and 30 mm (where possible).
- (3) The disturbance signal described below is injected to EUT through CDN.
- (4) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- (5) The frequency range is swept from 0.150MHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- (6) The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- (7) Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

12.6.Injected currents susceptibility Test Results

EUT	: Funny sweater with LED light	Test Date : N/A
M/N	: CX1553	Temperature : N/A
Test Engineer	: N/A	Humidity : N/A
Test Voltage	: N/A	Pressure : N/A
Test Mode	: N/A	
Test Results	: N/A	

13. Magnetic Field Immunity Test

13.1.Block Diagram of Test Setup

13.2.magnetic field Test Limits

Level	Magnetic Field Strength A/m		
1	1		
2	3		
3	10		
4	30		
5	100		
X	Special		

Notes: 1. Test set-up reference IEC 61000-4-8:2009

13.3.Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-8 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

13.4. Operating Condition of EUT

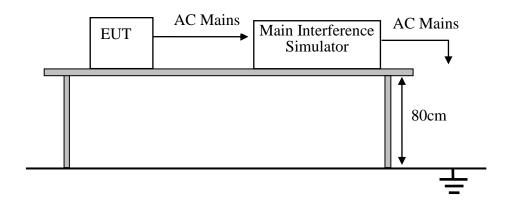
- (1) Setup the EUT as shown as Section 13.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

13.5.Test Procedure

The EUT was subjected to the test magnetic field by using the induction coil of standard dimensions

Report No.: A2405188-C01-R01

(1) (1m*1m) and shown in Section 13.1. The induction coil was then rotated by 90°in order to expose the EUT to the test field with different orientations.


13.6.Magnetic Field Immunity Test Results

EUT	: Funny	sweater with LED light	Test Date	:	N/A
M/N	: CX155	3	Temperature	:	N/A
Test Engineer	: N/A		Humidity	:	N/A
Test Voltage	: N/A		Pressure	:	N/A
Test Mode	: N/A				
Test Results	: N/A				
The FLIT not containing devices susceptible to magnetic fields, and Power-frequency magnetic					

The EUT not containing devices susceptible to magnetic fields, and Power-frequency magnetic Note: field test applicable only to EUT containing devices susceptible to magnetic fields, so the test not applicable.

14. Voltage Dips And Interruptions Test

14.1.Block Diagram of Test Setup

14.2. Voltage dips and interruptions Test Limits

Test Level %UT	Voltage dip and short interruptions %UT	Performance Criterion	Duration (in period)
0	100	В	0.5
0	100	В	1
70	30	С	25
0	100	С	250

Notes: 1. Test set-up reference IEC 61000-4-11:2020

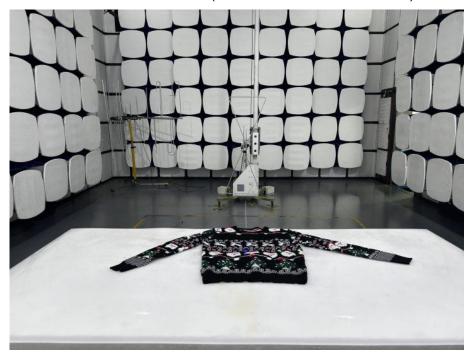
14.3. Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-11 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

14.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 14.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

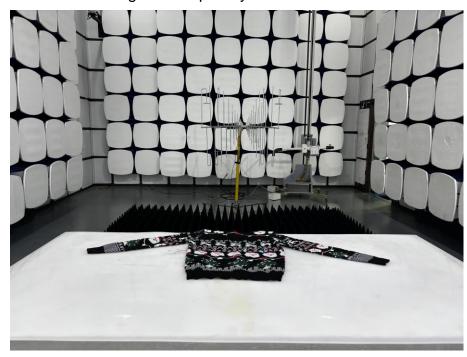
14.5.Test Procedure


- (1) The interruption is introduced at selected phase angles with specified duration.
- (2) Record any degradation of performance.

14.6. Voltage Dips And Interruptions Test Results

EUT	:	Funny sweater with LED light	Test Date	:	N/A
M/N	:	CX1553	Temperature	:	N/A
Test Engineer	:	N/A	Humidity	:	N/A
Test Voltage	:	N/A	Pressure	:	N/A
Test Mode	:	N/A			
Test Results	:	N/A			
Note	:	EUT is provided by Battery and has no interconnection wires, so this item is not applicable.			

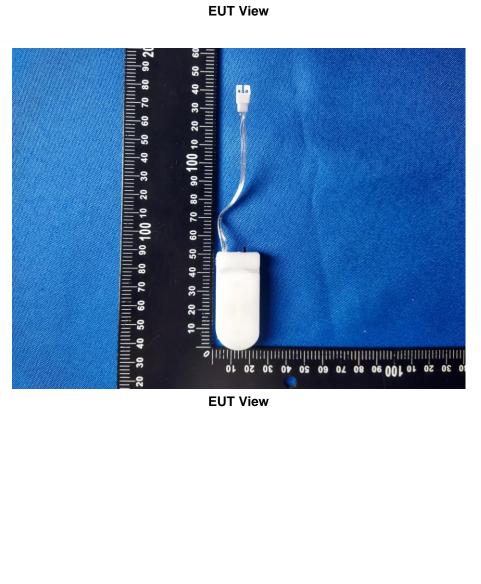
15. Photograph

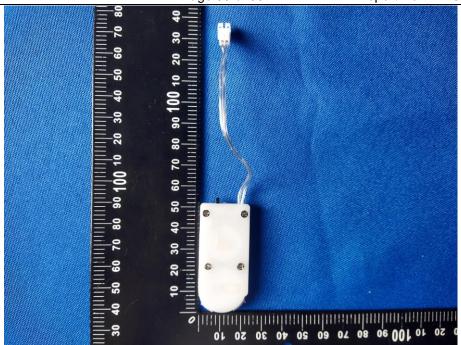

15.1.Photo Of Radiated Emissions Test (In Semi Anechoic Chamber)

15.2.Photo of Electrostatic Discharge Test

15.3.Photo of RF Field Strength Susceptibility Test

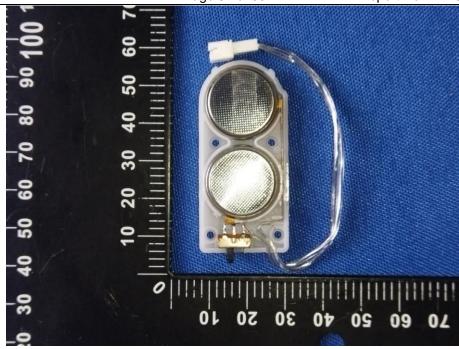
16. Photos Of The EUT

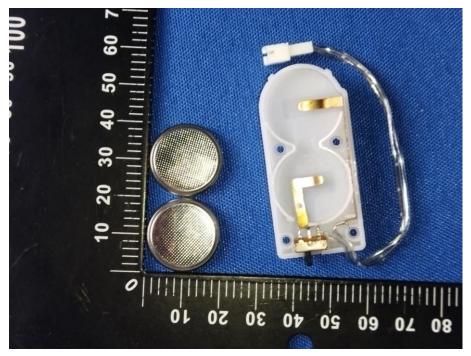

EUT View

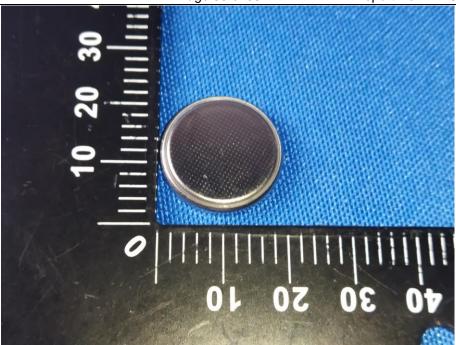


EUT View

EUT View




EUT View


EUT View


EUT View

EUT View

EUT View

EUT View

----END OF REPORT----